Therapeutic cloning gets a boost with new research findings

March 25, 2009

San Antonio ... Germ cells, the cells which give rise to a mammal's sperm or eggs, exhibit a five to ten-fold lower rate of spontaneous point mutations than adult somatic cells, which give rise to the body's remaining cell types, tissues and organs. Despite their comparatively higher mutation rates, however, adult somatic cells are used as the donor cells in a cloning process called somatic cell nuclear transfer (SCNT). This made researchers wonder if cloning by SCNT leads to progeny with more mutations than their naturally conceived counterparts. Also, would cloned fetuses receive DNA programming predisposing them to develop mutations faster than natural fetuses of the same age?

Those scenarios are simply not likely, say researchers at The University of Texas at San Antonio, The University of Texas Health Science Center at San Antonio and The University of Hawaii at Honolulu's John A. Burns School of Medicine. The team, which spent more than five years analyzing mutation rates and types in cloned Big Blue® mouse fetuses recently published its findings in the online Early Edition of the Proceedings of the National Academy of Sciences in a paper titled "Epigenetic regulation of genetic integrity is reprogrammed during cloning."

The paper offers the first direct demonstration that cloning does not lead to an increase in the frequency of point mutations.

John McCarrey, professor of cellular and molecular biology at UTSA and the study's principal investigator, suggests a "bottleneck effect" is partially responsible for the observations his team recorded. "To create a cloned fetus by somatic cell nuclear transfer, only one adult somatic cell -- one donor cell -- is needed," he explains. "Because a random cell population exhibits a low mutation rate overall and only one cell from that population is used for cloning, the likelihood is remote that the cell chosen to be cloned will transfer a genetic mutation to its cloned offspring. Therefore, the bottleneck effect limits the transfer of mutations from donor cells to cloned offspring."

Not only did the researchers find that SCNT does not lead to an increase in the frequency of point mutations in cloned mice, the team also found that naturally conceived fetuses and cloned fetuses that are the same age have similar rates of spontaneous mutation development. They attribute this finding to epigenetic reprogramming.

It is known in the scientific community that germ cells contain an epigenome, a programmed state of the genome, that keeps mutation rates low. They suggest this type of epigenome is found in germ cells because those cells are responsible for contributing genetic information to subsequent generations. Adult somatic cells (the donor cells in SCNT) have higher mutation rates and less stringent epigenetic programming to avoid mutations than germ cells, but offspring produced from somatic cells by cloning have mutation rates similar to those in offspring produced by natural reproduction, suggesting that the epigenome of an adult somatic cell is reprogrammed during cloning to maintain the genetic integrity of that cell's progeny.
-end-
To learn more about the collaborative study, funded by the National Institutes of Health's Eunice Kennedy Shriver National Institute of Child Health and Human Development and supported by the National Institutes of Health's National Institute on Aging, please contact UTSA professor John McCarrey at john.mccarrey@utsa.edu or (210) 458-4507.

The University of Texas at San Antonio is one of the fastest growing higher education institutions in Texas and the second largest of nine academic universities and six health institutions in the UT System. As a multicultural institution of access and excellence, UTSA aims to be a premier public research university providing access to educational excellence and preparing citizen leaders for the global environment.

UTSA serves more than 28,400 students in 64 bachelor's, 47 master's and 21 doctoral degree programs in the colleges of Architecture, Business, Education and Human Development, Engineering, Honors, Liberal and Fine Arts, Public Policy, Sciences and Graduate School. Founded in 1969, UTSA is an intellectual and creative resource center and a socioeconomic development catalyst for Texas and beyond.

University of Texas at San Antonio

Related Germ Cells Articles from Brightsurf:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Germ-free lungs of newborn mice are partially protected against hyperoxia
Researchers have used a novel and first-of-its-kind newborn mouse model to study the effect of high oxygen concentrations, or hyperoxia, on lung development of newborn mice that are germ-free -- meaning no microbes colonizing their lungs.

Identification of all types of germ cells tumors
Germ cell tumors were considered very heterogeneous and diverse, until recently.

Unravelling the 3-dimensional genomic structure of male germ cells
A study led by the UAB and the CNAG-CRG reveals the three-dimensional genomic structure of male germ cells and how this structure determines their function.

Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.

Germ-fighting catheter coating may help prevent infections
In an innovation that may ultimately help to prevent deadly bloodstream infections, a team of biomedical engineers and infectious disease specialists at Brown University developed a coating to keep intravascular catheters from becoming a haven for harmful bacteria.

Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.

Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.

Treatments for cancer and sickle cell disease deplete germ cells in young boys
Scientists have discovered that some treatments for cancer and sickle cell disease can destroy the germ cells that go on to develop into sperm in the testes of young boys.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Germ Cells News and Germ Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.