Common bacteria on verge of becoming antibiotic-resistant superbugs

March 25, 2015

Antibiotic resistance is poised to spread globally among bacteria frequently implicated in respiratory and urinary infections in hospital settings, according to new research at Washington University School of Medicine in St. Louis.

The study shows that two genes that confer resistance against a particularly strong class of antibiotics can be shared easily among a family of bacteria responsible for a significant portion of hospital-associated infections.

Drug-resistant germs in the same family of bacteria recently infected several patients at two Los Angeles hospitals. The infections have been linked to medical scopes believed to have been contaminated with bacteria that can resist carbapenems, potent antibiotics that are supposed to be used only in gravely ill patients or those infected by resistant bacteria.

"Carbapenems are one of our last resorts for treating bacterial infections, what we use when nothing else works," said senior author Gautam Dantas, PhD, associate professor of pathology and immunology. "Given what we know now, I don't think it's overstating the case to say that for certain types of infections, we may be looking at the start of the post-antibiotic era, a time when most of the antibiotics we rely on to treat bacterial infections are no longer effective."

Dantas and other experts recommend strictly limiting the usage of carbapenems to cases in which no other treatments can help.

The study, conducted by researchers at Washington University, Barnes-Jewish Hospital and the National University of Sciences and Technology in Pakistan, is available online in Emerging Infectious Diseases.

The researchers studied a family of bacteria called Enterobacteriaceae, which includes E. coli, Klebsiella pneumoniae and Enterobacter. Some strains of these bacteria do not cause illness and can help keep the body healthy. But in people with weakened immune systems, infections with carbapenem-resistant versions of these bacteria can be deadly.

The Centers for Disease Control and Prevention named carbapenem-resistant Enterobacteriaceae as one of the three most urgent threats among emerging forms of antibiotic-resistant disease. Studies have shown the fatality rate for these infections is above 50 percent in patients with weakened immune systems.

Two genes are primarily responsible for carbapenem-resistant versions of these disease-causing bacteria. One gene, KPC, was detected in New York in 2001 and quickly spread around most of the world, with the exception of India, Pakistan and other South Asian countries. This gene was present in the bacteria that recently contaminated medical equipment in a Los Angeles hospital where two patients died.

A second carbapenem resistance gene, NDM-1, was identified in 2006 in New Delhi, India. It was soon detected throughout South Asia, and most patients infected by bacteria with NDM-1 have had an epidemiological link to South Asian countries.

Dantas and his collaborators were curious about why the two resistance genes seemed to be geographically exclusive. For the study, they compared the genomes of carbapenem-resistant bacteria isolated in the United States with those of carbapenem-resistant bacteria isolated in Pakistan.

Based on the apparent geographic exclusivity of the two resistance genes, the scientists expected to find that bacteria from the two regions were genetically different. Such differences could explain why the two resistance genes weren't intermingling. But the researchers' results showed otherwise. The bacteria's high genetic similarity suggests that the antibiotic resistance genes could be shared easily between bacteria from the two geographic regions.

The researchers also sequenced a special portion of bacterial genetic material called plasmids. Most of a bacteria's DNA is found in its chromosome, but bacteria also have many extra, smaller and circular bits of DNA known as plasmids that easily can pass from one bacterial strain to another. A plasmid is like a bacterial gene delivery truck; it is the primary way antibiotic resistance genes spread between bacteria.

The researchers identified a few key instances in which the plasmids carrying NDM-1 or KPC were nearly identical, meaning they easily could facilitate the spread of antibiotic resistance between disease-causing bacteria found in the United States and South Asia. Recent evidence suggests that this intermingling already may be happening in parts of China.

"Our findings also suggest it's going to get easier for strains of these bacteria that are not yet resistant to pick up a gene that lets them survive carbapenem treatment," Dantas said. "Typically, that's not going to be a problem for most of us, but as drug-resistant forms of Enterobacteriaceae become more widespread, the odds will increase that we'll pass one of these superbugs on to a friend with a weakened immune system who can really be hurt by them."
-end-
This research was supported by the National Institutes of Health (NIH) Director's New Innovator Award, the National Institute of Diabetes and Digestive and Kidney Diseases, and the National Institute of General Medical Sciences, grant numbers DP2DK098089 and R01GM099538.

Pesesky MW, Hussain T, Wallace M, Wang B, Andleeb S, Burnham C-AD, Dantas G. KPC and NDM-1 are harbored by related Enterobacteriaceae strains and plasmid backbones form distinct geographies. Emerging Infectious Diseases, June 2015; http://dx.doi.org/10.3201/eid2106.141504.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Washington University School of Medicine

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.