Nav: Home

Cells in standby mode

March 25, 2016

Normally, cells are highly active and dynamic: in their liquid interior, called the cytoplasm, countless metabolic processes occur in parallel, proteins and particles jiggle around wildly. If, however, those cells do not get enough nutrients, their energy level drops. This leads to a marked decrease of the cytoplasmic pH - the cells acidify. In response, cells enter into a kind of standby mode, which enables them to survive. A team of researchers from Dresden, Germany, have found out that the cytoplasm of these seemingly dead cells changes its consistency from liquid to solid. Thereby, they protect the sensitive structures in the cellular interior.

Cells can enter into a kind of standby mode - called dormancy - when confronted with unfavorable conditions such as nutrient deprivation. In this state, cells drastically reduce their metabolism and shut down growth and cell division. In extreme cases, such cells are hardly or not at all distinguishable from dead cells - and yet they can re-emerge from this state unharmed and continue to grow and divide when conditions in their environment improve.

Munder and colleagues from Dresden (Germany) under supervision of Simon Alberti wanted to understand how cells switch on and off the standby mode. They focused their efforts on yeast cells, which they observed during starvation. Their observation: The cytoplasm loses its dynamics, cell organelles and particles slow down and many proteins form large, microscopically visible structures. It seems as if the cytoplasm changes its consistency in response to nutrient deprivation. And indeed: a closer look with highly sensitive biophysical methods shows that the material state of the cytoplasm changes from liquid to solid - the cell enters into a kind of rigor mortis. As it turns out, the cytoplasmic pH, which decreases markedly under starvation conditions, plays a crucial role in this process.

Remarkably, the sleeping cells - in contrast to dead cells - can also reverse this process. When nutrients are added back, the pH rises again, the cytoplasm fluidizes and cells continue to grow and divide. The studies of Munder and colleagues show that the state of the cytoplasm is crucial for switching on and off the standby mode: ''Cells seem to have a control mechanism in place, which they use for the regulation of their material properties in response to certain environmental cues, thereby ensuring their survival''. Thus, it seems to be possible to trick death by shutting down all processes of life in a controlled manner. Whether this trick can be taught to human cells will become clear in the next couple of years.
-end-
Original publication

Matthias Munder, Daniel Midtvedt, Titus Franzmann, Elisabeth Nüske, Oliver Otto, Maik Herbig, Elke Ulbricht, Paul Müller, Anna Taubenberger, Shovamayee Maharana, Doris Richter, Jochen Guck, Vasily Zaburdaev and Simon Alberti
A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy
eLIFE, 22 March 2016
DOI: http://dx.doi.org/10.7554/eLife.09347
Published March 22, 2016

Max-Planck-Gesellschaft

Related Cytoplasm Articles:

Nobel Laureate, Tom Cech, Ph.D., suggests new way to target third most common oncogene, TERT
Study in PNAS shows that trapping TERT mRNA in the cell nucleus may keep TERT oncogene from being manufactured, silencing the action of TERT in driving cancer.
New insight into microRNA function can give gene therapy a boost
Scientists at the University of Eastern Finland and the University of Oxford have shown that small RNA molecules occurring naturally in cells, i.e. microRNAs, are also abundant in cell nuclei.
How the cell protects itself
The cell contains transcripts of the genetic material, which migrate from the cell nucleus to another part of the cell.
How the cytoplasm separates from the yolk
The segregation of yolk from the surrounding cytoplasm in the very early fish embryo is a key process for the development of the fish larva.
Solving the efficiency of Gram-negative bacteria
Superbugs, also known as Gram-negative bacteria, are causing a global health crisis.
More Cytoplasm News and Cytoplasm Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...