Nav: Home

CRI researchers link absence of protein to liver tissue regeneration

March 25, 2016

DALLAS - March 25, 2016 - Scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) report that inactivating a certain protein-coding gene promotes liver tissue regeneration in mammals.

"This research gives us ideas about new ways to treat liver damage or chronic liver disease," said senior author Dr. Hao Zhu, an Assistant Professor at CRI with joint appointments in Internal Medicine and Pediatrics at UT Southwestern Medical Center. The study was published this week in the journal Cell Stem Cell.

Tails in lizards and arms in starfish show an astounding ability to regrow, but mammals have partially lost the capacity to extensively regenerate body parts, Dr. Zhu said. The liver is unique among human solid organs in its robust regenerative capability. A healthy liver can regenerate up to 70 percent of its tissue after injury, he explained.

However, when the liver has been repeatedly damaged - by chemical toxins or chronic disease - it loses its ability to regenerate. Following repeated injuries, cirrhosis or scar tissue forms, greatly increasing the risk of cancer, said Dr. Zhu, who also treats liver cancer patients at Parkland Memorial Hospital. The Zhu laboratory studies both regeneration, when cells proliferate to repair an organ, and cancer, when cells proliferate out of control.

The National Cancer Institute (NCI) reports that liver cancer deaths increased at the highest rate of all common cancers from 2003-2012. In addition to cirrhosis, risk factors for liver cancer include infections caused by the hepatitis C virus (HCV), liver damage from alcohol or other toxins, chronic liver disease, and certain rare genetic disorders.

Dr. Zhu began his investigation by studying a mouse that lacked Arid1a, the mouse version of a gene associated with some human cancers.

"In humans, the gene ARID1A is mutated in several cancers, including liver cancer, pancreatic cancer, breast cancer, endometrial cancer, lung cancer, the list goes on," Dr. Zhu said. "It is not mutated in every type of cancer, but in a significant number. Those mutations are found in 10 to 20 percent of all cancers, and the mutations render the gene inactive."

Based on this association, the researchers hypothesized that mice lacking Arid1a would develop liver damage and, eventually, liver cancer. They were surprised when the opposite proved to be the case - no liver damage occurred. In fact, livers of the mice regenerated faster and appeared to function better, he added.

"The livers were resistant to tissue damage and healed better, which are two good things - like playing offense and defense at the same time," he said. "These results opened up a whole new avenue of investigation for us, and through that investigation we found a new function for this gene."

On observation, livers in the mice without the gene appeared healthier. Blood tests confirmed improved liver function. When researchers deleted the gene in mice with various liver injuries, they found that the livers replaced tissue mass quicker and showed reduced fibrosis in response to chemical injury. Also, other tissues such as wounded skin healed faster in Arid1a-deficient mice.

No drugs are currently available to mimic a lack of this protein, although the researchers are using a grant from the Cancer Prevention and Research Institute of Texas (CPRIT) to search for one.

"We want to identify small molecules that mimic the effect of these genetic findings. The ideal drug would be one that helps the liver heal while inhibiting the development of cancer. That would be the perfect drug for my patients," said Dr. Zhu, a CPRIT Scholar in Cancer Research.

Dr. Zhu said loss of the gene and the protein it expresses may accelerate regeneration by reorganizing how genes are packaged in the genome so that the cells can more easily switch back and forth toward a more regenerative state, sort of like a toggle switch.

"Somehow, loss of this gene seems to make it easier for the cell to go back and forth," he said. "This study opens up new areas to investigate how to rejuvenate tissues without necessarily increasing cancer risk, although many more tests will have to be done to determine how the risk of all types of liver cancers are altered."
-end-
Co-authors included lead author Dr. Xuxu Sun and Dr. Xin Liu, postdoctoral researchers at CRI; Dr. Jen-Chieh Chuang, Assistant Instructor at CRI; Mahsa Sorouri, research assistant at CRI; Lin Li, senior research scientist at CRI; Dr. Jian Xu, Assistant Professor at CRI and Pediatrics at UTSW; graduate students Cemre Celen, Shuyuan Zhang, and Yi-Chun Kuo; Liem Nguyen, a Howard Hughes Medical Institute International Student Research fellow; Dr. Sam Wang, Assistant Professor of Surgery at UTSW; Dr. Ibrahim Nassour, surgical resident at UTSW; Thomas Maples, medical student at UTSW; Mohammed Kanchwala, a computational biologist in UTSW's Eugene McDermott Center for Human Growth and Development, and Dr. Chao Xing, Associate Professor in the McDermott Center and of Clinical Sciences.

Other contributors were from First Affiliated Hospital of Sun Yat-Sen University, UT Southwestern's sister institution in Guangzhou, China; the University of California, San Diego; Icahn School of Medicine at Mount Sinai; and the University of Michigan.

This study was supported by the American Heart Association, the March of Dimes Foundation, the National Institutes of Health, the Burroughs Welcome Fund, CPRIT, and donors to the Children's Medical Center Foundation.

About CRI

Children's Medical Center Research Institute at UT Southwestern (CRI) is a joint venture established in 2011 to build upon the internationally recognized scientific excellence of UT Southwestern Medical Center and the comprehensive clinical expertise of Children's Medical Center, the flagship hospital of Children's HealthSM. CRI's mission is to perform transformative biomedical research to better understand the biological basis of disease, seeking breakthroughs that can change scientific fields and yield new strategies for treating disease. Located in Dallas, Texas, CRI is creating interdisciplinary groups of exceptional scientists and physicians to pursue research at the interface of regenerative medicine, cancer biology and metabolism, fields that hold uncommon potential for advancing science and medicine. More information about CRI is available on its website: cri.utsw.edu.

This news release is available on our home page at http://www.utsouthwestern.edu/home/news/index.html.

UT Southwestern Medical Center

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.