Nav: Home

The Forces behind South and Central China's Extremely Hot Summer

March 25, 2019

The effects of extreme warming have been felt across the globe in recent years, especially with intensely hot summers in eastern Asia, western Europe, and North America. On July 21, 2017, a weather station in Shanghai, China recorded a high temperature of 40.9°C (105.6°F), the highest temperature recorded at that location since 1873. To understand what caused the extremely hot summer for South and Central China, a scientific collaboration of climatologists examined how abnormal sea surface temperatures and atmospheric circulation could co-influence regional temperatures over land.

Their results were featured on the latest cover of the peer-reviewed journal Advances in Atmospheric Sciences on 23 March, 2019.

"The occurrence of an extreme hot midsummer leads to huge socioeconomic threats, due to the high density of the population and concentration of the economy in those regions. It's of great concern to both the government and the public," said Ruidan Chen, the first author on the paper, who is an associate professor in the School of Atmospheric Sciences at Sun Yat-sen University in Guangzhou, China.

Chen also noted that the heat of 2017 was especially concerning, since it was not an El Niño year - which causes sea warming - and the temperatures should have been more temperate. However, according to Chen, a non-El Niño year meant that the variables influencing temperature were limited, making 2017 a unique case study.

The researchers examined the western tropical Pacific, the region of the Pacific Ocean that runs along the equator in the Eastern Hemisphere, which controls the atmospheric temperatures that directly influence the climate over Central and South China.

"We explored the internal process of the climate system that led to the hot midsummer," Chen said.

With observational data collected from 740 weather stations, researchers analyzed temperature data for July and August from 1979 to 2017. They identified the extreme heat days, when temperatures exceeded 35°C (95°F),and examined the factors that could influence such a high temperature.

The researchers found the heat was directly caused by a high-pressure system in the atmosphere, which greatly impacted the surface temperature. The high-pressure system modulated the subtropical western north Pacific, a sub-region of the western Pacific that wields great influence over the behavior of the rest of the region. The team found that the high-pressure system was abnormally intensified, a result of increased sea surface temperatures due to any number of things, including human causes such as pollution.

In addition to the effects of the high-pressure system, the ocean has continued to warm over the last decade and is predicted to continue warming into the long-term future. In 2018, the temperatures continued to break records. The researchers found that the increased sea surface temperature over the western tropical Pacific accounted for about 50 percent of the 2017 heat, as well as the long-term warming contributed about 40 percent.

"Next, we will analyze the influence of the western tropical Pacific on the long-term variations of the extreme heat over Central and South China," Chen said. "The ultimate goal is to understand the reasons for climate change over this region."
This work was supported by the National Key Research and Development Program of China, the National Natural Science foundation of China, the Leading Talents of Guangdong Province Program, the Pioneer Hundred Talents Program of the Chinese Academy of Sciences, and the Fundamental Research Funds for the Central Universities.

Other contributors include Zhiping Wen of the Department of Atmospheric and Oceanic Sciences at Fudan University; Riyu Lu of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics at the Institute of Atmospheric Physics at the Chinese Academy of Sciences and the University of the Chinese Academy of Sciences; and Chunzai Wang of the State Key Laboratory of Tropical Oceanography of the South China Sea Institute of Oceanology at the Chinese Academy of Sciences.

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at