Nav: Home

Engineering cellular function without living cells

March 25, 2019

Genes in living cells are activated - or not - by proteins called transcription factors. The mechanisms by which these proteins activate certain genes and deactivate others play a fundamental role in many biological processes. However, these mechanisms are extremely complex and scientists have been spending years trying to unlock their secrets.

Scientists usually study gene expression by introducing specific DNA sequences into cells and observing how the cells react. But this labor-intensive method is complicated and can vary from one experiment to the next. In an important step forward, scientists at EPFL's Laboratory of Biological Network Characterization (LBNC), headed by Sebastian Maerkl, have developed a quantitative, replicable method for studying and even predicting gene expression. It uses a cell-free system in combination with a high-throughput microfluidic device. Their work allowed them to build a synthetic biological logic gate that could one day be used to modify cellular functions. The research has been published in PNAS.

Microchannels and cell-free processes

Nadanai Laohakunakorn, a coauthor of the study, explains how the method works: "First we extract material from inside the cells. This 'cell-free' system consists of enzymes and chemicals that the cells use to carry out their normal biological processes. Interestingly, we can restart gene expression outside the cell by feeding the extract with fuel and information, in the form of high-energy phosphates and DNA. Because the process closely mimics what happens in living cells, we can use our platform to investigate a range of biological phenomena without having to modify living cells each time."

For their quantitative study of gene expression, the scientists examined thousands of cell-free reactions on a microfluidic chip - that is, a device used to manipulate microscopic quantities of liquid. "We were able to test several different scenarios and build a quantitative library of synthetic transcription factors, which allowed us to predict the influence of a given protein on a gene," says Zoe Swank, another coauthor of the study. "Our method can be extended to build fairly complicated systems."

The scientists' method has several advantages. First, cell-free systems can imitate systems within cells, yet they are much simpler, and their mechanisms can be modeled mathematically. This means that they can help contribute to understanding more complex biological phenomena by breaking them down into simpler pieces.

Second, cell-free systems are robust and remain stable after freezing (and even freeze-drying), which allows them to be produced on a large scale and deployed in applications from low-cost diagnostics to the on-demand production of biologics - such as vaccines - for personalized medicine. And third, because they are not alive, cell-free systems can be used to produce compounds that go beyond the scope of traditional biomanufacturing methods. And they pose no risk of self-replication or biocontamination outside the laboratory environment.

A biological logic gate

As part of their study, the researchers assembled a number of genes from their library to construct a biological logic gate. In electronics, a logic gate takes an input of electronic signals, performs a computation, and generates a binary output: one or zero. Similarly, the scientists' biological logic gate takes an input of transcription factors and generates a binary output: the gene is either on (activated) or off (repressed).

"Numerous logic gates exist naturally within living cells, which use them to regulate normal biological function," says Laohakunakorn. "By building artificial gates, we gain the ability to introduce new functions into cells for therapeutic purposes, for example. The cell-free system is a first step in this direction, and future work could involve optimizing the design of our transcription factors using the platform, before deploying them directly in a cell-free application, or reintroducing them back into living cells."
-end-
References

Z. Swank, N. Laohakunakorn, S. J. Maerkl, Cell-free gene regulatory network engineering with synthetic transcription factors, PNAS, DOI: https://doi.org/10.1101/407999

Ecole Polytechnique Fédérale de Lausanne

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.