Nav: Home

ELSI scientist constructs artificial photosynthetic cells

March 25, 2019

A team led by associate professor Yutetsu Kuruma of the Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology has constructed simple artificial cells that can produce chemical energy that helps synthesize parts of the cells themselves. This work marks an important milestone in constructing fully photosynthetic artificial cells, and may shed light on how primordial cells used sunlight as an energy source early in life's history.

Scientists build artificial cells as models of primitive cells, as well as to understand how modern cells function. Many sub-cellular systems have now been built by simply mixing cell components together. However, real living cells construct and organize their own components. It has also been a long time goal of research to build artificial cells that can also synthesize their own constituents using the energy available in the environment.

The Tokyo Tech team combined a cell-free protein synthesis system, which consisted of various biological macromolecules harvested from living cells, and small protein-lipids aggregates called proteoliposomes, which contained the proteins ATP synthase and bacteriorhodopsin, also purified from living cells, inside giant synthetic vesicles. ATP synthase is a biological protein complex that uses the potential energy difference between the liquid inside a cell and the liquid in the cell's environment to make the molecule adenosine triphosphate (ATP), which is the energy currency of the cell. Bacteriorhodopsin is a light-harvesting protein from primitive microbes that uses light energy to transport hydrogen ions outside of the cell, thus generating a potential energy difference to help ATP synthase operate. Thus, these artificial cells would be able to use light to make a hydrogen ion gradient that would help make the fuel cells use to run their sub-cellular systems, including making more protein.

Just as the scientists hoped, the photosynthesized ATP was consumed as a substrate for transcription, the process by which biology makes messenger RNA (mRNA) from DNA, and as an energy for translation, the process by which biology makes protein from mRNA. By also including the genes for parts of the ATP synthase and the light-harvesting bacteriorhodopsin, these processes also eventually drive the synthesis of more bacteriorhodopsin and the constituent proteins of ATP synthase, a few copies of which were included to "jump-start" the proteoliposome. The newly formed bacteriorhodopsin and ATP synthase parts then spontaneously integrated into the artificial photosynthetic organelles and further enhanced ATP photosynthesis activity.

As professor Kuruma states "I have been trying for a long time to construct a living artificial cell, especially focusing on membranes. In this work, our artificial cells were wrapped in lipid membranes, and small membrane structures were encapsulated inside them. In this way, the cell membrane is the most important aspect of forming a cell, and I wanted to show the importance of this point in the study of artificial cell and feedback in origins of life studies."

Kuruma thinks the most impact point of this work is that artificial cells can produce energy to synthesize the parts of the cell itself. This means that the artificial cells could be made to be energetically independent and then it would be possible to construct self-sustaining cells, just like actual biological ones cells. "The most challenging thing in this work was the photosynthesis of the bacteriorhodopsin and the ATP synthase parts, which are membrane proteins. We tried to photosynthesize a full ATP synthase, which has 8 kinds of component proteins, but we could not because of the low productivity of the cell-free protein synthesis system. But, if it was upgraded, we may photosynthesize the whole 8 kinds component proteins."

Nevertheless, this work demonstrates that a simple biologically inspired system including two kinds of membrane protein is able to supply energy to drive gene expression inside a microcompartment. Thus, primordial cells using sunlight as a primal energy source could have existed early in life's evolution before modern autotrophic cells arose. The team believes attempts to construct living artificial cells will help understand the transition from non-living to living matter that took place on early Earth and, help develop biology-based devices that can sense light and drive biochemical reactions. These artificial photosynthetic cell systems also help pave the way to constructing energetically independent artificial cells.
-end-


Tokyo Institute of Technology

Related Protein Articles:

Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More than a protein factory
Researchers from the Stowers Institute for Medical Research have discovered a new function of ribosomes in human cells that may show the protein-making particle's role in destroying healthy mRNAs, the messages that decode DNA into protein.
Put down the protein shake: Variety of protein better for health
University of Sydney researchers have examined whether there are any ongoing ramifications or potential side-effects from long-term high protein intake or from consuming certain types of amino acids.
Elucidating protein-protein interactions & designing small molecule inhibitors
To carry out wide range of cellular functionalities, proteins often associate with one or more proteins in a phenomenon known as Protein-Protein Interaction (PPI).
The protein with the starting gun
Whether dormant bacteria begin to reproduce is no accident. Rather, they are simply waiting for a clear signal from a single protein in the cell interior.
Protein moonlighting
A class of proteins involved in essential cell functions has an unexpected role, UCSB scientists discover.
More Protein News and Protein Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab