Nav: Home

A varied menu

March 25, 2019

The Freiburg biologists Dr. Simon Poppinga, Anna Westermeier and Prof. Dr. Thomas Speck, working in cooperation with researchers from the Ruhr University Bochum and the Institute of Botany of the Czech Academy of Sciences in T?ebo? (Czech Republic), have for the first time reconstructed in detail the "menu" of the carnivorous waterwheel plant (Aldrovanda vesiculosa). This shows that the plant is not at all fussy about what it eats, and catches anything and everything that fits into its trap and triggers the snap mechanism. The team has published its results in the open-access journal Integrative Organismal Biology.

Using its snap traps, which are only a few millimeters in size, the waterwheel plant catches prey animals that live underwater. The traps snap shut within about 20 milliseconds of mechanical stimulation. The basic trapping principle of the waterwheel plant is the same as the terrestrial Venus flytrap (Dionaea muscipula). However, the two types differ not only with regard to the mediums in which they live, that is water and air respectively, but also in the size, rapidity and movement mechanics of their traps. The researchers believe it is important to establish whether the plants have adapted to catching special types of prey, in order to better understand their ecology and evolution. This knowledge is also key to possible conservation measures, because increasing loss of suitable habitat is threatening the waterwheel plant with extinction.

The scientists undertook comparative analyses of the prey composition of a total of eight different populations of the waterwheel plant in Germany and the Czech Republic. This showed that the prey's mode of locomotion is irrelevant to Aldrovanda, because besides fast swimming prey, the researchers also often found slow crawling animals such as snails in the traps. The 43 prey taxa identified ranged from tiny water mites to comparatively large mosquito larvae and back swimmers that barely fit into the traps. Likewise, the trap size does not act as a morphological filter for certain prey sizes, as large traps also contained small prey animals (and vice versa). Since the waterwheel plant occurs in highly fragmented habitats, which may be very different in terms of the composition of their animal inhabitants, the diverse diet of Aldrovanda could be an advantage over a stricter prey specialization, the researchers speculate.

The Plant Biomechanics Group at the Botanical Garden of the University of Freiburg has a research focus into the investigation of plant movement principles, especially the fast traps of carnivorous plants. The team has already investigated the Aldrovanda traps in respect to their biomechanics and functional morphology as part of an international research cooperation and have transferred their deformation principle into a biomimetic facade shading, the Flectofold.
-end-
Original publication: Horstmann M., Heier L., Kruppert S., Weiss L.C., Tollrian R., Adamec L., Westermeier A., Speck T., Poppinga S. (2018): Comparative prey spectra analyses on the endangered aquatic carnivorous waterwheel plant (Aldrovanda vesiculosa, Droseraceae) at several naturalized microsites in the Czech Republic and Germany. Integrative Organismal Biology. doi:10.1093/iob/oby012 https://academic.oup.com/iob/article/1/1/oby012/5419227

Press Release on the snap mechanism of the waterwheel plant https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/how-the-waterwheel-plant-snaps?set_language=en

Article in the online magazine of the University of Freiburg on Flectofold biomimetic facade shading https://www.pr.uni-freiburg.de/pm-en/online-magazine/research-and-discover/plant-structures-inspire-cool-concepts?set_language=en

Contact: Plant Biomechanics Group, University of Freiburg

University of Freiburg

Related Plants Articles:

Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
How plants can tell friend from foe
The plant's immune system can recognize whether a piece of RNA is an invader or not based on whether the RNA has a threaded bead-like structure at the end, say University of Tokyo researchers.
Plants at the pump
Regular, unleaded or algae? That's a choice drivers could make at the pump one day.
How do people choose what plants to use?
There are about 400,000 species of plants in the world.
Defend or grow? These plants do both
From natural ecosystems to farmers' fields, plants face a dilemma of energy use: outgrow and outcompete their neighbors for light, or defend themselves against insects and disease.
How do plants protect themselves against sunburn?
To protect themselves against UV-B, which are highly harmful, plants have developed cellular tools to detect them and build biochemical defenses.
Pea plants demonstrate ability to 'gamble' -- a first in plants
An international team of scientists from Oxford University, UK, and Tel-Hai College, Israel, has shown that pea plants can demonstrate sensitivity to risk -- namely, that they can make adaptive choices that take into account environmental variance, an ability previously unknown outside the animal kingdom.
A 'Fitbit' for plants?
Knowing what physical traits a plant has is called phenotyping.
How plants conquered the land
Research at the University of Leeds has identified a key gene that assisted the transition of plants from water to the land around 500 million years ago.
Plants are 'biting' back
Calcium phosphate is a widespread biomineral in the animal kingdom: Bones and teeth largely consist of this very tough mineral substance.

Related Plants Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".