Nav: Home

Listening to the quantum vacuum

March 25, 2019

Since the historic finding of gravitational waves from two black holes colliding over a billion light years away was made in 2015, physicists are advancing knowledge about the limits on the precision of the measurements that will help improve the next generation of tools and technology used by gravitational wave scientists.

Louisiana State University Department of Physics & Astronomy Associate Professor Thomas Corbitt and his team of researchers now present the first broadband, off-resonance measurement of quantum radiation pressure noise in the audio band, at frequencies relevant to gravitational wave detectors, as reported today in the scientific journal Nature.

The research was supported by the National Science Foundation, or NSF, and the results hint at methods to improve the sensitivity of gravitational-wave detectors by developing techniques to mitigate the imprecision in measurements called "back action," thus increasing the chances of detecting gravitational waves.

Corbitt and researchers have developed physical devices that make it possible to observe--and hear--quantum effects at room temperature. It is often easier to measure quantum effects at very cold temperatures, while this approach brings them closer to human experience. Housed in miniature models of detectors like LIGO, or the Laser Interferometer Gravitational-Wave Observatory, located in Livingston, La., and Hanford, Wash., these devices consist of low-loss, single-crystal micro-resonators--each a tiny mirror pad the size of a pin prick, suspended from a cantilever. A laser beam is directed at one of these mirrors, and as the beam is reflected, the fluctuating radiation pressure is enough to bend the cantilever structure, causing the mirror pad to vibrate, which creates noise.

Gravitational wave interferometers use as much laser power as possible in order to minimize the uncertainty caused by the measurement of discrete photons and to maximize the signal-to-noise ratio. These higher power beams increase position accuracy but also increase back action, which is the uncertainty in the number of photons reflecting from a mirror that corresponds to a fluctuating force due to radiation pressure on the mirror, causing mechanical motion. Other types of noise, such as thermal noise, usually dominate over quantum radiation pressure noise, but Corbitt and his team, including collaborators at MIT, have sorted through them. Advanced LIGO and other second and third generation interferometers will be limited by quantum radiation pressure noise at low frequencies when running at their full laser power. Corbitt's paper in Nature offers clues as to how researchers can work around this when measuring gravitational waves.

"Given the imperative for more sensitive gravitational wave detectors, it is important to study the effects of quantum radiation pressure noise in a system similar to Advanced LIGO, which will be limited by quantum radiation pressure noise across a wide range of frequencies far from the mechanical resonance frequency of the test mass suspension," Corbitt said.

Corbitt's former academic advisee and lead author of the Nature paper, Jonathan Cripe, graduated from LSU with a Ph.D. in physics last year and is now a postdoctoral research fellow at the National Institute of Standards and Technology:

"Day-to-day at LSU, as I was doing the background work of designing this experiment and the micro-mirrors and placing all of the optics on the table, I didn't really think about the impact of the future results," Cripe said. "I just focused on each individual step and took things one day at a time. [But] now that we have completed the experiment, it really is amazing to step back and think about the fact that quantum mechanics--something that seems otherworldly and removed from the daily human experience--is the main driver of the motion of a mirror that is visible to the human eye. The quantum vacuum, or 'nothingness,' can have an effect on something you can see."

Pedro Marronetti, a physicist and NSF program director, notes that it can be tricky to test new ideas for improving gravitational wave detectors, especially when reducing noise that can only be measured in a full-scale interferometer:

"This breakthrough opens new opportunities for testing noise reduction," he said. The relative simplicity of the approach makes it accessible by a wide range of research groups, potentially increasing participation from the broader scientific community in gravitational wave astrophysics."
-end-


Louisiana State University

Related Gravitational Waves Articles:

Gravitational lensing provides a new measurement of the expansion of the universe
Amid ongoing uncertainty around the value of the Hubble Constant, uncertainty largely created by issues around measuring distances to objects in the galaxy, scientists who used a new distance technique have derived a different Hubble value, one 'somewhat higher than the standard value,' as Tamara Davis describes it in a related Perspective.
Gravitational waves leave a detectable mark, physicists say
New research shows that gravitational waves leave behind plenty of 'memories' that could help detect them even after they've passed.
DIY gravitational waves with 'BlackHoles@Home'
Researchers hoping to better interpret data from the detection of gravitational waves generated by the collision of binary black holes are turning to the public for help.
Gravitational waves will settle cosmic conundrum
Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international team that includes University College London (UCL) and Flatiron Institute cosmologists.
LIGO and Virgo announce four new gravitational-wave detections
The LIGO and Virgo collaborations have now confidently detected gravitational waves from a total of 10 stellar-mass binary black hole mergers and one merger of neutron stars, which are the dense, spherical remains of stellar explosions.
More Gravitational Waves News and Gravitational Waves Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...