Nav: Home

For clogged and hardened hearts, a mussel is the solution

March 25, 2020

Early mortality of myocardial infarction (MI), one of fatal diseases, is about 30%. So, it is critical to have immediate and proactive treatment to prevent a heart attack. Contributing to developing an efficient treatment of this fatal disease, a research team from South Korea recently proposed an effective stem cell treatment system for myocardial infarction, using harmless protein from mussel and stem cells.

Prof. Hyung Joon Cha and Mr. Tae Yoon Park from Department of Chemical Engineering, POSTECH with Prof. Sung Bo Sim from Department of Thoracic and Cardiovascular Surgery, Yeouido St. Mary's Hospital and Prof. Jongho Lee from Department of Thoracic and Cardiovascular Surgery, Daejeon St. Mary's Hospital developed an 'adhesive protein-based immiscible condensed liquid system' (APICLS) that efficiently delivered the mesenchymal stem cells (MSCs) to the damaged cardiac muscular tissues and enabled the transplantation prolonged. By employing the phase separation phenomenon of mussel adhesive protein, they were able to easily encapsulate the MSCs in the liquid coacervate. Especially, based on the mass production of bioengineered mussel adhesive protein, their newly suggested platform can be expected to be an innovative therapeutic system for myocardial infarction.

Heart is a vital organ that circulates blood while repeating contraction and relaxation of muscles by electrical signals. When blood vessels are clogged, oxygens and nutrients cannot be supplied to the heart and it brings severe damages to a muscle of the heart, causing infarcted myocardium with disruption of blood networks. This causes a necrosis on wall of the myocardium, resulting in cardiac wall thinning and this phenomenon is known as myocardial infarction. Because the heart cannot regenerate itself when it is damaged, there is no method for innovatively regenerating damaged heart muscles. As current therapeutic strategies, patients are treated with either mechanical device or heart transplantation.

Recently, there have been numbers of research proposing on transplanting exogenous stem cells into the damaged myocardium to help heart regeneration as a future treatment technique. However, transplanted stem cells have very low survival rate due to harsh environment of the heart. Even when the transplantation is successful, most of the stems cells soon die.

For a successful stem cell therapy on MI, there are two conditions required to survive in harsh environment of the damaged heart. First, the stem cells must be efficiently transplanted and remained into the thinned cardiac muscles. Secondly, transplanted stem cells must integrate rapidly into resident surrounding tissues to improve their viability by forming blood vessels. However, the current therapeutic methods so far cannot deliver injected stem cells to infarcted cardiac muscular tissues successfully, making it very difficult to maintain the transplantation.

The joint research team injected the MSCs encapsulated in APICLS into the thinned and infarcted cardiac muscular wall efficiently. They demonstrated in vivo feasibility through rat MI model that transplanted MSCs survived in the infarcted cardiac muscular tissues for a long time due to the mussel adhesive proteins with its unique characteristics of adhesiveness and angiogenesis and the efficacy of MSCs. Furthermore, the damaged heart muscles formed new blood vessels, prevented further apoptosis of existing cardiomyocytes, and regenerated the damaged cardiac wall by reducing fibrosis.

It is anticipated that the new stem cell delivery system proposed in this research will play an essential role in the stem cell therapeutic market as it used biocompatible materials which are harmless to humans.

"By using mussel adhesive proteins, we demonstrated with the MI rat model and proved its therapeutic efficacy as an efficient stem cell injection strategy. We gives a hope that it can also be successfully applied to chronic diseases and ischemic diseases that have similar environment," said Prof. Hyung Joon Cha who led the research.

In the meanwhile, this research was introduced as the most innovative technology found by POSTECH in the Most Innovative Universities 2019 by Reuters last year. It is also published on the website of Journal of Controlled Release, the world's most renowned journal in the field of drug delivery. This study was supported by the Marine BioMaterials Research Center grant funded by the Ministry of Oceans and Fisheries, Korea.
-end-


Pohang University of Science & Technology (POSTECH)

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.