Nav: Home

How trans fats assist cell death

March 25, 2020

Tohoku University researchers in Japan have uncovered a molecular link between some trans fats and a variety of disorders, including cardiovascular and neurodegenerative diseases. Their findings, published in the journal Scientific Reports, implicate their role in enhancing a mitochondrial signalling pathway that leads to programmed cell death.

"Accumulating evidence has associated the consumption of trans-fatty acids with various diseases, including some lifestyle diseases, atherosclerosis and dementia. But the underlying causes have remained largely unknown," says Atsushi Matsuzawa of Tohoku University's Laboratory of Health Chemistry.

Matsuzawa and a team of researchers explored the effects of two trans fats produced during industrial food manufacturing, elaidic and linoelaidic acids, on programmed cell death.

Cells instigate programmed cell death, which is called apoptosis, if their DNA is damaged beyond repair. DNA damage can occur in response to a variety of factors, including reactive oxygen species, ultraviolet irradiation and anti-cancer drugs. Normally, cells counteract this process by repairing the lesions. But problems in the DNA damage response can lead to diseases also associated with trans fats.

The researchers induced DNA damage in cells using the anti-cancer drug doxorubicin. They found that elaidic and linoelaidic acids enhanced the apoptosis that followed. Other unsaturated fatty acids did not have the same effect.

Specifically, they found the fatty acids affected mitochondria, the energy-generating powerhouses of cells. DNA damage activates a signalling loop inside mitochondria that generates reactive oxygen species, which ultimately promote apoptosis. The industrial trans fats enhanced mitochondria's production of reactive oxygen species through this signalling loop, and thus increased apoptosis.

Apoptosis is thought to lead to the development and progression of disorders associated with industrial trans fats, such as the build-up of plaque inside arteries, called atherosclerosis.

"Our research revealed a novel toxic function and mechanism of action of trans-fatty acids, which can account for pathological mechanisms, including atherosclerosis," says Matsuzawa. "This significant finding will provide a molecular basis to understand how trans-fatty acids cause disease."

The researchers theorize that targeting this molecular mechanism with drugs might have a therapeutic effect on a diverse range of trans-fat-associated diseases. The team plans to further investigate this link and the extent to which this mechanism contributes to these diseases. They also aim to determine the differences in toxicity between different trans fats.
-end-


Tohoku University

Related Dna Articles:

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.