Nav: Home

Cellular protein shredders for the fight against cancer

March 25, 2020

An international team of researchers led by the Universities of Bonn and Ulm has investigated how a cell's own "protein shredder" can be specifically programmed to fight cancer. The researchers were able to demonstrate the degradation of proteins that are overly active in breast cancer, for example. The results are published in the renowned journal "Chemical Science".

Cells continuously produce proteins to be able to carry out their tasks in the body. Any protein molecules that are no longer needed are given a kind of "disposal sticker". All proteins with such a label are then crushed and recycled by a cell's own shredder, the proteasome.

For some years, researchers have been trying to harness this mechanism selectively in the fight against diseases such as cancer. After all, tumor cells also require certain proteins. If it was possible to attach a disposal label to them, they would inevitably be shredded by the proteasome, which would inhibit the growth of the cancer cell.

This approach has indeed already proven to be effective in the test tube. Here, scientists use so-called PROTACs (the abbreviation stands for "proteolysis targeting chimeras"). "However, producing these substances is very complicated," explains Prof. Dr. Michael Gütschow from the Pharmaceutical Institute of the University of Bonn. "We have investigated which strategies are promising in this respect and how particularly effective PROTACs can be customized, so to speak."

Molecular hybrids

PROTACs are molecular hybrids: They consist of both a molecular part that docks to the cancer protein, as well as a structure that can bind to the labeling enzymes. Both units are connected by a kind of arm. PROTACs thus bring the target protein and the labeling machine together, thereby ensuring that the harmful protein is given a disposal label.

"We have synthesized many molecules, among other things to find out what structure and length the arm must have in order to label the protein as effectively as possible," explains Christian Steinebach from the Pharmaceutical Institute of the University of Bonn. In addition, the researchers optimized another aspect of the PROTACs. Each cell has dozens of different labeling enzymes called ubiquitin ligases. Not all of them work equally well with every protein. "We have therefore produced and tested different PROTACs for different ligases," says Dr. Jan Krönke from Ulm University Medical Center.

The active substances developed target a protein that ensures that cancer cells can multiply better. The PROTACs now cause the cell's own shredder to destroy the protein. "In experiments with cell cultures, we were able to show that our PROTACs actually significantly reduce the cellular concentration of this protein and effectively suppress the growth of cancer cells," explains Dr. Krönke. "The substances now allow us to study proteins that are important for the tumor in more detail."

The universities of Bonn and Ulm are among the leading institutions in Germany in the young field of PROTAC research. "Our study shows prototypically which techniques can be used to produce and specifically optimize these active substances," says Gütschow. There is great interest in such strategies, since PROTACs are regarded as an important beacon of hope for the treatment of serious diseases.
-end-
Publication: Christian Steinebach, Yuen Lam Dora Ng, Izidor Sosič, Chih-Shia Lee, Sirui Chen, Stefanie Lindner, Lan Phuong Vu, Aleša Bricelj, Reza Haschemi, Marius Monschke, Elisabeth Steinwarz, Karl G. Wagner, Gerd Bendas, Ji Luo, Michael Gütschow and Jan Krönke: Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders; Chemical Science; dx.doi.org/10.1039/d0sc00167h

Contact:

Prof. Dr. Michael Gütschow
Pharmazeutisches Institut der Universität Bonn
Tel. +49-(0)228-732317
E-mail: guetschow@uni-bonn.de

Priv.-Doz. Dr. Jan Krönke
Abteilung für Innere Medizin III des Universitätsklinikums Ulm
Tel. +49-(0)731-50045718
E-mail: jan.kroenke@uni-ulm.de

University of Bonn

Related Breast Cancer Articles:

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.
Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
More Breast Cancer News and Breast Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.