# How to break new records in the 200 metres?

March 25, 2020Usain Bolt's 200m record has not been beaten for ten years and Florence Griffith Joyner's for more than thirty years. And what about if the secret behind beating records was to use mathematics? Thanks to a mathematical model, Amandine Aftalion, CNRS researcher at the Centre d'analyse et de mathématique sociales (CNRS/EHESS), and Emmanuel Trélat, a Sorbonne Université researcher at the Laboratoire Jacques-Louis Lions (CNRS/Sorbonne Université/ Université de Paris) have proved that the geometry of athletic tracks could be optimised to improve records. They recommend to build shorter straights and larger radii in the future. These findings are to be published in

*Royal Society Open Science*on 25 March, 2020.

At present, there are three designs of tracks that can be certified by World Athletics: standard tracks (consisting of straights and semi-circles) and two types of double-bend track (where the double bend is made of three arcs of two different radii). It is usually admitted in the athletic community that the standard track is the quickest and that there is no chance of beating a record on a double-bend track. Double-bend tracks have actually been designed to accommodate a football or rugby stadium, and the main drawback is that the bends have a smaller radius of curvature. Therefore, the centrifugal force is greater and the double bend tracks are slower. Multi-sports arenas are therefore not adapted to athletic records and there is a major disadvantage to being on inner lanes.

The mathematical model developped by Amandine Aftalion and Emmanuel Trélat couples mechanics and energetics, in particular the maximal oxygen uptake (VO2max) and anaerobic energy, into a system of differential equations that combines velocity, acceleration, propulsive force, neural drive with cost and benefit parametres in order to determine the optimal strategy to run a race.

Since this model optimises the effort to produce the best race, it makes it possible to compute the optimal geometry of a track and predict the discrepancy in records according to this geometry and the type of lane. For standard tracks, it shows that shorter straights and larger radii of curvature could improve the 200m record possibly by 4 hundredth of a second. The constraint to accommodate other sports can be met by opting for new tracks with shorter horizontal straights and small vertical straights. The researchers recommendation is to privilege such tracks in the future in order to improve runners' performance.

They are adapting their model to horse races with the support of the AMIES.

-end-

CNRS

**Related Mathematical Model Articles:**

Moffitt mathematical model predicts patient outcomes to adaptive therapy

In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

New mathematical model can more effectively track epidemics

As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

Mathematical model could lead to better treatment for diabetes

MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

New mathematical model reveals how major groups arise in evolution

Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Mathematical model reveals behavior of cellular enzymes

Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

New mathematical model for amyloid formation

Scientists report on a mathematical model for the formation of amyloid fibrils.

Scientists report on a mathematical model for the formation of amyloid fibrils.

New mathematical model shows how diversity speeds consensus

Scientific literature abounds with examples of ways in which member diversity can benefit a group -- whether spider colonies' ability to forage or an industrial company's financial performance.

Scientific literature abounds with examples of ways in which member diversity can benefit a group -- whether spider colonies' ability to forage or an industrial company's financial performance.

Newly developed mathematical model could be used to predict cancer drug side effects

A research team at Kobe University Hospital have further illuminated the likelihood of cancer drug side effects that can occur due to genetic mutations in the drug-metabolizing enzyme.

A research team at Kobe University Hospital have further illuminated the likelihood of cancer drug side effects that can occur due to genetic mutations in the drug-metabolizing enzyme.

A mathematical model reveals long-distance cell communication mechanism

An interdisciplinary collaborative team at KAIST has identified how a large community can communicate with each other almost simultaneously even with very short distance signaling.

An interdisciplinary collaborative team at KAIST has identified how a large community can communicate with each other almost simultaneously even with very short distance signaling.

Experimentally validated model for drug discovery gets a stamp of mathematical approval

Insilico Medicine, a biotechnology company developing an end-to-end drug discovery pipeline utilizing next-generation artificial intelligence, is proud to present its paper 'A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models' at the 33rd Conference on Neural Information Processing Systems (NeurIPS).

Insilico Medicine, a biotechnology company developing an end-to-end drug discovery pipeline utilizing next-generation artificial intelligence, is proud to present its paper 'A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models' at the 33rd Conference on Neural Information Processing Systems (NeurIPS).

## Trending Science News

**Current Coronavirus (COVID-19) News**

## Top Science Podcasts

We have hand picked the**top science podcasts of 2020**.

**Now Playing: TED Radio Hour**

**Listen Again: Meditations on Loneliness**

Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.

**Now Playing: Science for the People**

**#565 The Great Wide Indoors**

We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".

**Now Playing: Radiolab**

**The Third. A TED Talk.**

Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.