How to break new records in the 200 metres?

March 25, 2020

Usain Bolt's 200m record has not been beaten for ten years and Florence Griffith Joyner's for more than thirty years. And what about if the secret behind beating records was to use mathematics? Thanks to a mathematical model, Amandine Aftalion, CNRS researcher at the Centre d'analyse et de mathématique sociales (CNRS/EHESS), and Emmanuel Trélat, a Sorbonne Université researcher at the Laboratoire Jacques-Louis Lions (CNRS/Sorbonne Université/ Université de Paris) have proved that the geometry of athletic tracks could be optimised to improve records. They recommend to build shorter straights and larger radii in the future. These findings are to be published in Royal Society Open Science on 25 March, 2020.

At present, there are three designs of tracks that can be certified by World Athletics: standard tracks (consisting of straights and semi-circles) and two types of double-bend track (where the double bend is made of three arcs of two different radii). It is usually admitted in the athletic community that the standard track is the quickest and that there is no chance of beating a record on a double-bend track. Double-bend tracks have actually been designed to accommodate a football or rugby stadium, and the main drawback is that the bends have a smaller radius of curvature. Therefore, the centrifugal force is greater and the double bend tracks are slower. Multi-sports arenas are therefore not adapted to athletic records and there is a major disadvantage to being on inner lanes.

The mathematical model developped by Amandine Aftalion and Emmanuel Trélat couples mechanics and energetics, in particular the maximal oxygen uptake (VO2max) and anaerobic energy, into a system of differential equations that combines velocity, acceleration, propulsive force, neural drive with cost and benefit parametres in order to determine the optimal strategy to run a race.

Since this model optimises the effort to produce the best race, it makes it possible to compute the optimal geometry of a track and predict the discrepancy in records according to this geometry and the type of lane. For standard tracks, it shows that shorter straights and larger radii of curvature could improve the 200m record possibly by 4 hundredth of a second. The constraint to accommodate other sports can be met by opting for new tracks with shorter horizontal straights and small vertical straights. The researchers recommendation is to privilege such tracks in the future in order to improve runners' performance.

They are adapting their model to horse races with the support of the AMIES.


Related Mathematical Model Articles from Brightsurf:

A mathematical model facilitates inventory management in the food supply chain
A research study in the Diverfarming project integrates transport resources and inventory management in a model that seeks economic efficiency and to avoid shortages

Mathematical modelling to prevent fistulas
It is better to invest in measures that make it easier for women to visit a doctor during pregnancy than measures to repair birth injuries.

Predicting heat death in species more reliable with new mathematical model
An international research with the involvement of the Universitat Autònoma de Barcelona (UAB), published in Science, has developed a new dynamic mathematical model which represents a change in paradigm in predicting the probability of heat-related mortality in small species.

Using a Gaussian mathematical model to define eruptive stages of young volcanic rocks
Precise dating of young samples since the Quaternary has been a difficult problem in the study of volcanoes and surface environment.

Moffitt mathematical model predicts patient outcomes to adaptive therapy
In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

New mathematical model can more effectively track epidemics
As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

Mathematical model could lead to better treatment for diabetes
MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

New mathematical model reveals how major groups arise in evolution
Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

New mathematical model for amyloid formation
Scientists report on a mathematical model for the formation of amyloid fibrils.

Read More: Mathematical Model News and Mathematical Model Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to