Nav: Home

A nanoscale device to generate high-power Terahertz waves

March 25, 2020

Terahertz (THz) waves fall between microwave and infrared radiation in the electromagnetic spectrum, oscillating at frequencies of between 100 billion and 30 trillion cycles per second. These waves are prized for their distinctive properties: they can penetrate paper, clothing, wood and walls, as well as detect air pollution. THz sources could revolutionize security and medical imaging systems. What's more, their ability to carry vast quantities of data could hold the key to faster wireless communications.

THz waves are a type of non-ionizing radiation, meaning they pose no risk to human health. The technology is already used in some airports to scan passengers and detect dangerous objects and substances.

Despite holding great promise, THz waves are not widely used because they are costly and cumbersome to generate. But new technology developed by researchers at EPFL could change all that. The team at the Power and Wide-band-gap Electronics Research Laboratory (POWERlab), led by Prof. Elison Matioli, built a nanodevice (1 nanometer = 1 millionth of a millimeter) that can generate extremely high-power signals in just a few picoseconds, or one trillionth of a second, - which produces high-power THz waves.

The technology, which can be mounted on a chip or a flexible medium, could one day be installed in smartphones and other hand-held devices. The work first-authored by Mohammad Samizadeh Nikoo, a PhD student at the POWERlab, has been published in the journal Nature.

How it works

The compact, inexpensive, fully electric nanodevice generates high-intensity waves from a tiny source in next to no time. It works by producing a powerful "spark," with the voltage spiking from 10 V (or lower) to 100 V in the range of a picosecond. The device is capable of generating this spark almost continuously, meaning it can emit up to 50 million signals every second. When hooked up to antennas, the system can produce and radiate high-power THz waves.

The device consists of two metal plates situated very close together, down to 20 nanometers apart. When a voltage is applied, electrons surge towards one of the plates, where they form a nanoplasma. Once the voltage reaches a certain threshold, the electrons are emitted almost instantly to the second plate. This rapid movement enabled by such fast switches creates a high-intensity pulse that produces high-frequency waves.

Conventional electronic devices are only capable of switching at speeds of up to one volt per picosecond - too slow to produce high-power THz waves.

The new nanodevice, which can be more than ten times faster, can generate both high-energy and high-frequency pulses. "Normally, it's impossible to achieve high values for both variables," says Matioli. "High-frequency semiconductor devices are nanoscale in size. They can only cope with a few volts before breaking out. High-power devices, meanwhile, are too big and slow to generate terahertz waves. Our solution was to revisit the old field of plasma with state-of-the-art nanoscale fabrication techniques to propose a new device to get around those constraints."

According to Matioli, the new device pushes all the variables to the extreme: "High-frequency, high-power and nanoscale aren't terms you'd normally hear in the same sentence."

"These nanodevices, on one side, bring an extremely high level of simplicity and low-cost, and on the other side, show an excellent performance. In addition, they can be integrated with other electronic devices such as transistor. Considering these unique properties, nanoplasma can shape a different future for the area of ultra-fast electronics", says Samizadeh.

The technology could have wide-ranging applications beyond generating THz waves. "We're pretty sure there'll be more innovative applications to come," adds Matioli.
-end-


Ecole Polytechnique Fédérale de Lausanne

Related Nanoscale Articles:

House cleaning on the nanoscale
A team of scientists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) has developed a novel mechanical cleaning method for surfaces on the nanoscale.
As electronics shrink to nanoscale, will they still be good as gold?
As circuit interconnects shrink to nanoscale, will the pressure caused by thermal expansion when current flows through wires cause gold to behave more like a liquid than a solid -- making nanoelectronics unreliable?
A joint venture at the nanoscale
Scientists at Argonne National Laboratory report fabricating and testing a superconducting nanowire device applicable to high-speed photon counting.
Bending diamond at the nanoscale
A team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least.
Creating a nanoscale on-off switch for heat
Researchers create a polymer thermal regulator that can quickly transform from a conductor to an insulator, and back again.
Magnetic tuning at the nanoscale
Physicists from the German research center Helmholtz-Zentrum Dresden-Rossendorf (HZDR) are working to produce engineered magnetic nanostructures and to tailor material properties at the nanoscale.
Scientists can now control thermal profiles at the nanoscale
Scientists have designed and tested an experimental system that uses a near-infrared laser to actively heat two gold nanorod antennae to different temperatures.
New study shows nanoscale pendulum coupling
In 1665, Lord Christiaan Huygens found that two pendulum clocks, hung in the same wooden structure, oscillated spontaneously and perfectly in line but in opposite directions: the clocks oscillated in anti-phase.
Research reveals liquid gold on the nanoscale
Swansea University researchers have discovered what liquid gold looks like on the nanoscale - and in doing so have mapped the way in which nanoparticles melt, which is relevant to the manufacturing and performance of nanotech devices such as bio-sensors, nanochips , gas sensors, and catalysts.
Nanoscale thermometers from diamond sparkles
The development of a novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale will have immediate applications for both industry and fundamental scientific research, scientists say.
More Nanoscale News and Nanoscale Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.