Nav: Home

OSU research paves way to improved cleanup of contaminated groundwater

March 25, 2020

CORVALLIS, Ore. - Beads that contain bacteria and a slow-release food supply to sustain them can clean up contaminated groundwater for months on end, maintenance free, research by Oregon State University shows.

The hydrogel beads, which have the consistency of gummy candy and are made with an ingredient used in processed foods, hold the promise for sustained cleanup of groundwater contaminated with dangerous and widely used volatile organic compounds; many of the compounds are listed by the Centers for Disease Control and Prevention as likely human carcinogens.

At multiple locations around the country, the chemicals are present at concentrations that far exceed state and federal standards for safe drinking water.

Among the contaminants addressed in the study are 1,1,1-trichloroethane, cis-1,2-dichloroethene, and 1,4-dioxane -- degreasers commonly used by industry and the military. The chemicals can infiltrate groundwater through leaky underground storage tanks or runoff, or by simply being dumped on the ground as they were in past.

The new decontamination method, developed through a collaboration between the OSU College of Engineering and North Carolina State University, works because the microbes produce an enzyme that oxidizes the toxins when groundwater contaminants diffuse into the beads.

The result is a transformation of the contaminants into harmless compounds.

"We've created a process called long-term aerobic cometabolism, which is an enclosed, passive, self-sustaining system for groundwater remediation," said OSU's Lew Semprini, distinguished professor of environmental engineering and principal investigator on the study. "The beauty of this is that everything happens inside the beads."

Current practices, Semprini explains, call for gaseous growth substrates such as propane and methane to be added directly to the subsurface. The substrates nourish indigenous microbes, which in turn produce enzymes that transform the contaminants to non-toxic byproducts.

Often, however, the growth substrates chemically compete for those crucial enzymes, which significantly inhibits the transformation process.

The new system eliminates that competition, freeing all of the enzyme to oxidize contaminants.

"We've flipped the paradigm on its head by putting the right microorganism inside hydrogel beads and supplying it with a slow-release food source," Semprini said. "To my knowledge, this is the first time it's been done."

The study appears in Environmental Science: Processes & Impacts.

Semprini and his research team co-encapsulated the bacteria culture Rhodococcus rhodochrous and a slow-release growth substrate within hydrogel beads that they produced in the lab. The cylindrical beads, made of gellan gum, a common ingredient in processed foods, are 2 millimeters long.

As groundwater flows by the beads, the contaminants diffuse into the beads, where the slow release substrate reacts with groundwater to produce alcohol that sustains the Rhodococcus bacteria. The bacteria contain a monooxygenase enzyme that transforms the contaminants into harmless compounds, including carbon dioxide, water and chloride ions.

The purified water and the byproducts then diffuse out of the beads and rejoin the groundwater plume.

In bead-filled test columns supplied with a continuous flow of contaminated water, the system functioned continuously for more than 300 days (and counting) on the original growth substrate.

Semprini found that the beads remove more than 99% of the contaminants, and their concentrations declined from several hundred parts per billion to less than 1 part per billion.

The system's longevity will depend mainly on how long the bacteria live, which is a factor of how long the growth substrate lasts. That has yet to be determined.

"It's a question for future research," Semprini said. "How do we make beads that last many years, or how do we develop systems that can easily be replaced?"

Current cometabolic remediation methods require regular additions of growth substrates to ensure that key microorganisms flourish, and that necessitates regular site monitoring, biochemical adjustments and related costs.

The next step is to scale up the system and conduct pilot studies in the field.

Semprini envisions several possibilities for deploying the beads. One option is mixing beads directly into contaminated subsurface material. Another is to dig a trench in the path of groundwater flow and fill it with beads, creating a permeable reactive barrier. A third possibility is packing beads into reactors, a simple form being mesh bags, that can be placed in wells.

"Everybody favors sustainability in this type of system: Can we just have something working in the subsurface without much maintenance?" Semprini said. "I think we've achieved that."
-end-
The study was funded by the Department of Defense.

Oregon State University

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.