Colorado State University Researcher Develops Real-Time Radar For Military, Commercial Planes Flying In Congested Skies

March 25, 1997

FORT COLLINS--Radar technology developed by a Colorado State math professor will enable military planes to separate multiple airborne objects in a fraction of a second and differentiate false targets from real targets in cluttered skies--a major advancement in aeronautical radar systems.

Professor Aubrey B. Poore formulated and solved complicated mathematical equations that improved radar systems aboard Airborne Warnings And Control Systems (AWACS) radar planes without the need to install additional hardware, which adds weight to the planes.

The technology also could be used in commercial airplanes to avoid mid-air collisions, help United States law enforcement agencies better track boats and airplanes suspected of carrying illegal narcotics, and improve traffic reports from the sky.

In 1996, Poore was awarded a United States patent for his inventions, and another patent is pending. Poore and IBM-Federal Systems in Boulder (now Lockheed-Martin Federal Systems Inc.) were awarded one joint patent on a portion of the technology in 1995.

"It was a high-risk research project attempting to solve a problem that in all probability could not be solved," Poore said. "To have this project succeed is a real credit to the graduate students involved, the department of mathematics and the university for its strong support of the research effort."

Radar currently used in military aircraft can separate and identify multiple objects in the air but only from a limited distance and in limited degrees, said Poore. When air traffic is dense, it can take weeks or months for an air traffic controller to match the behavior of an unknown object with an actual target.

Poore's technology isolates and identifies airborne objects even amid conditions that create false targets on a radar screen--such as weather and other environmental conditions--and does it in a fraction of a second, or real-time. This feature enables radar operators to track objects even as they pass through areas with a lot of clutter.

"We'll be able to save a lot of processing time and energy that would have otherwise been spent trying to isolate real targets from objects that produce a false reading on the radar screen," said Marty Liggins, who oversees surveillance research at the Air Force Research Laboratory in Rome, N.Y. "This technology will help cut work in identifying and tracking objects by orders of magnitude."

The technology was tested extensively over the last two years at Hanscom Air Force Base in Boston, Mass., and chosen in September as the best tracking system for AWACS in a national competition, Poore said. The research has been continually supported by the mathematics and geosciences division of the Air Force Office of Scientific Research and the Air Force Research Laboratory in Rome.

Lockheed-Martin Federal Systems won the right to install Poore's technology into existing radar systems in 12 Air Force AWACS planes. These planes will be used for additional tests before they are put into operation. In addition, several private companies already have expressed interest in the technology for commercial airplanes and other uses, Poore said.

"This is an important development because it transfers vital research from the university to real-world applications in industry," said Judson Harper, vice president for research and information technology at Colorado State. "We are proud that research of this calibre has such far-reaching effects."

Poore already is working on other research to solve the limitations of airborne radar to identify and track multiple objects on the ground. The professor was awarded a $400,000 grant over the next three years from the Air Force to develop mathematical equations and algorithms that can isolate targets amid ground clutter from multiple airborne platforms.
-end-


Colorado State University

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.