Long-term use of mechanical ventilation contributes to the deterioration of human diaphragm muscle

March 26, 2008

PHILADELPHIA - A new study by University of Pennsylvania School of Medicine shows, for the first time in humans, that ventilators combined with diaphragm disuse contributes to muscle atrophy in the diaphragm in as little as eighteen hours. Muscle atrophy in the diaphragm is a major contributor of why patients who have undergone prolonged mechanical ventilation often have difficulty breathing after being removed from the ventilator.

The report, published in the March 27th edition of the New England Journal of Medicine, measured a greater than 50 percent decline in muscle fibers in the diaphragm. In addition, the study measured the proteins that play a key role in the muscle-wasting chemical cascade. By intervening in this pathway, the research suggests, a new pharmacological approach to safely and quickly wean patients off ventilators could be developed.

Sanford Levine, PhD, Professor of Thoracic Surgery and co-director of the Respiratory Muscle Research Laboratory, led a team that conducted 22 biopsies on both deceased and living patients. Fourteen brain-dead organ donors, aged 18 to 58, comprised the case study with each having undergone between 18 and 69 hours of mechanical ventilation. The eight-member control group each received less than three hours.

Levine said both groups were demographically and statistically similar except for the time each had spent on mechanical ventilation. Biopsy results on the other hand were different.

Compared to the control group, the diaphragms of the 14 case study members revealed: "From our observations, we conclude that these (biopsy differences) could only be attributed to marked atrophy caused by a combination of complete diaphragm inactivity and mechanical ventilation," Levine said.

"Disuse atrophy of human diaphragm myofibers could be a major contributor to the weaning problems that occur in some of our patients," Levine said. "Therefore, we believe fiber atrophy of the magnitude noted in our case diaphragms could have clinical significance."
-end-
Grants from the National Heart, Lung and Blood Institute and Department of Veterans Affairs provided financial support for the research. Research conducted with the cooperation and guidance of the Gift of Life.

This release and other news detailing Penn research can be found at www.pennhealth.com/news

University of Pennsylvania School of Medicine

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.