Statistics are insufficient for study of proteins' signal system

March 26, 2008

Ten years ago great attention was attracted by the discovery that it was possible to demonstrate signal transfer in proteins using statistical methods. In an article in the journal Proceedings of the National Academy of Science (PNAS) Uppsala researchers are now presenting results of experiments that contradict the theory.

Proteins govern nearly all chemical processes in the body's cells. A fundamental property of proteins is their ability to transfer signals - both within and between proteins. It is known, for example, that such signal transfer is vital to haemoglobin, which transports oxygen in the body. In that instance the mechanism has largely been clarified.

"But in other instances very little is known about the mechanisms or whether such signal transfer even occurs," says Per Jemth, who together with his research group at Uppsala University is studying whether signal transfer also occurs in small proteins.

Nearly ten years ago great attention was attracted by an article published in Science that described a method of demonstrating signal transfer in proteins by comparing their amino acid sequence. The authors recorded a statistical method of showing how certain parts of proteins change together through evolution, i.e. if a change had taken place in one part a change simultaneously took place in another part of the protein. One thus found a network of parts that seemed to belong together, and within this network signal transfer was deemed to take place.

But the Uppsala researchers saw several things that were not right about the results in the much discussed article, and by means of experiments they can now show that no more signals occur in this network than with other parts of the protein. They instead found, completely logically, that nearby parts of the protein interact more with each other than parts that are a long way apart.

"Our results thus question whether statistical methods can demonstrate signal transfer within proteins, and emphasise the importance of precise experiments to substantiate computer-based methods in protein chemistry," says Per Jemth.

The ability to predict proteins' function down to the smallest detail on the basis of their amino acid sequence is a goal that has preoccupied many researchers ever since human DNA became known. This study emphasises that experiments are needed to improve and refine the computerised methods currently in use.

"When theory, computer simulation and experiments provide the same answers the long-term goal has been attained, but there's still a long way to go."
-end-


Uppsala University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.