Nav: Home

New research shows fertilization drives global lake emissions of greenhouse gases

March 26, 2018

DULUTH, Minnesota--A paper published this week in the journal Limnology and Oceanography Letters is the first to show that lake size and nutrients drive how much greenhouse gases are emitted globally from lakes into the atmosphere.

"Our research pioneers a new way of determining the global atmospheric effect of lakes using satellite information on lake greenness and size distribution," said co-author John A. Downing, University of Minnesota Sea Grant director and professor of biology at the University of Minnesota Duluth. "This is important because the world's lakes and surface waters will emit more greenhouse gases as they become greener and more nutrient-rich."

Greenhouse gases released into the atmosphere drive global climate change. Although carbon dioxide is the most well-known greenhouse gas, methane and nitrous oxide, which are also emitted from lakes, could be far more devastating because they have much greater warming potential.

"Our work shows conclusively that methane, which is emitted from lakes in bubbles, is the dominant greenhouse gas coming from lakes and surface waters globally," said lead author Tonya DelSontro, now a researcher at the University of Geneva. "The greener or more eutrophic these water bodies become, the more methane is emitted, which exacerbates climate warming."

Green lakes result from excessive fertilization by nutrients, such as phosphorus and nitrogen, and when sediment accumulates in lakebeds. Such "greening" is called eutrophication.

"Our research team assembled the largest global dataset on lake emission rates of carbon dioxide, methane and nitrous oxide," said Downing. "When we analyzed the data, we found that emissions of greenhouse gases to the atmosphere were influenced by the amount of eutrophication but also that lake size matters a lot for carbon dioxide and nitrous oxide."

If the world's lakes and other surface waters become more eutrophic it could negate the reductions that society makes by reducing fossil fuel emissions.

"We need to know how much of these greenhouse gases are being emitted to be able to predict how much and how fast the climate will change," said DelSontro. "This paper is significant because we developed a more effective approach to estimate current and future global lake emissions."

The authors point to four key advancements that enabled their results to be more accurate than previous estimates: Recent advances in satellite and sensor technology, availability of detailed geographical data on lakes, an increasing number of global lake observations and improved statistical survey designs.

The authors also offer some relatively simple things people anywhere can do to protect the water in their community:
  • Decrease fertilizer application on urban and agricultural land

  • Maintain large buffer or filter strips of vegetation that intercept stormwater runoff

  • Manage septic systems to ensure they work effectively

  • Keep streets and curbs clean

"Even moderate increases in lake and surface water eutrophication over the next 50 years could be equivalent to adding 13 percent of the effect of the current global fossil fuel emissions," said Downing. "By keeping our community waters clean, we make better water available to future generations and we decrease worldwide emissions of methane that speed climate change."
-end-
Contacts: John A. Downing, Director, Minnesota Sea Grant; Professor of Biology, Department of Biology and Scientist, Large Lakes Observatory, University of Minnesota Duluth; downing@d.umn.edu, 218-726-8715.

Tonya DelSontro, Maître Assistant, University of Geneva, tdelsontro@gmail.com, +41 22 379 03 12.

Jake J. Beaulieu, biologist, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio. Beaulieu.Jake@epa.gov.

Marie Thoms, Communications and Public Relations Specialist, Minnesota Sea Grant, methoms@d.umn.edu, office: 218-726-8710, mobile: 907-460-1841, @MNSeaGrant. http://www.seagrant.umn.edu

Additional information:

This article is an invited paper to Limnology and Oceanography Letters, Special Issue - Current Evidence Carbon Cycling in Inland Waters and is an open-access article under the terms of the Creative Commons Attribution License. DOI: 10.1002/lol2.10073

Metadata available via figshare:  10.6084/m9.figshare.5220001

As a signatory to the 1992 United Nations Framework Convention on Climate Change, the United States is obligated to report the nation's anthropogenic greenhouse gas emissions every year. This research reported in this paper provides a methodology for estimating the magnitude of methane emissions from water bodies confined within an enclosure such as dams and reservoirs (i.e., impoundments), which have not previously been reported by the U.S. Environmental Protection Agency. The research reported here will improve the accuracy of the nation's greenhouse gas inventory and can inform better mitigation strategies.

University of Minnesota

Related Methane Articles:

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
Diffusing the methane bomb: We can still make a difference
The Arctic is warming twice as fast as the rest of the planet, causing the carbon containing permafrost that has been frozen for tens or hundreds of thousands of years to thaw and release methane into the atmosphere, thereby contributing to global warming.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.