Nav: Home

Superconductivity in an alloy with quasicrystal structure

March 26, 2018

Nagoya, Japan - Extraordinary things happen at low temperatures. One of the best examples is surely superconductivity. This phenomenon, wherein the electrical resistance of a solid drops to zero below a critical temperature, has been known for a century, and now has applications in science and industry. Physics and chemistry students can even make their own levitating magnets from superconducting alloys.

Most superconductors, like most solids, are crystalline: their atomic structures are built from periodically repeating cells. Since the 1980s an alternative form of solid, the quasicrystal (QC), has become prominent. Although QCs have symmetry, like crystals, they have no repeat units. This lack of periodicity results in unusual electronic structures. Now, in a study in Nature Communications, a research team led by Nagoya University has discovered superconductivity in a QC for the first time.

The team studied an alloy of aluminum, zinc and magnesium. The crystalline version is known to be superconducting. However, the structure of Al-Zn-Mg depends on the ratio of the three elements. The team found that Al had a crucial effect on the alloy's properties. As study first author Keisuke Kamiya notes, "When we reduced the Al content while keeping the Mg content almost constant, the critical temperature for superconductivity at first decreased gradually from ~0.8 to ~0.2 K. However, at 15% Al, two things happened: the alloy transformed into a quasicrystal, and the critical temperature plummeted to ~0.05 K."

This extremely low critical temperature, just 1/20 of a degree above absolute zero, explains why superconductivity in QCs has proven so hard to achieve. Nonetheless, the QC alloy showed two archetypal features of superconductors: a jump in specific heat at the critical temperature, and the almost total exclusion of magnetic flux from the interior, known as the Meissner effect.

Superconduction in conventional crystals is now well-understood. At sufficiently low temperature, the negatively charged electrons overcome their mutual repulsion and attract one another, teaming up into pairs. These "Cooper pairs" coalesce into a Bose-Einstein condensate, a quantum state of matter with zero electrical resistance. However, the attraction between electrons relies on their interaction with the solid lattice, and conventional theory assumes this is a periodic crystal, rather than a QC.

For the origin of superconduction in the QC alloy, the team considered three possibilities. The most exotic was "critical eigenstates": special electronic states only found near absolute zero. The electronic eigenstates are extended in crystals, and localized in random solids, but the spatial extent of the critical eigenstates in QCs--which are neither periodic nor random--is unclear. However, the team ruled them out based on their measurements. That led back to Cooper pairs, in either the extended or the less-common "weak-coupling" variety. In fact, the alloy closely resembled a typical weak-coupling superconductor.

"It's interesting that the superconductivity of this alloy was not linked to its quasicrystallinity, but resembled that in so-called dirty crystals," says corresponding author Noriaki K. Sato. "However, the theory of quasicrystals also predicts another form of superconduction, based on fractal geometry in QCs. We believe there is a strong possibility that fractal superconductivity makes at least some contribution, and we would be excited to finally measure it."

The article, "Discovery of superconductivity in quasicrystal," was published in Nature Communications at DOI:10.1038/s41467-017-02667-x.
-end-


Nagoya University

Related Superconductivity Articles:

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.
First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Superconductivity is heating up
Theory suggests that metallic hydrogen should be a superconductor at room temperature; however, this material has yet to be produced in the lab.
Light pulses provide a new route to enhance superconductivity
Scientists have shown that pulses of light could be used to turn materials into superconductors through an unconventional type of superconductivity known as 'eta pairing.'
Graphene on the way to superconductivity
Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance.
New quantum criticality discovered in superconductivity
Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S.
More Superconductivity News and Superconductivity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.