Nav: Home

New laser technique may help detect chemical warfare in atmosphere

March 26, 2018

The Department of Homeland Security could benefit from a reliable, real-time instrument that could scan the atmosphere for toxic agents in order to alert communities to a biological or chemical attack. UCF optics and photonics Professor Konstantin Vodopyanov is developing just such a technology to accomplish that.

He has found a new way to use infrared lasers to detect even trace amounts of chemicals in the air. Every chemical is made up of individual molecules that vibrate at their own unique frequency. Vodopyanov has found a way to use lasers to detect these vibrations.

The technique is so accurate and sensitive that he can determine if there is a molecule of any chemical present even at concentrations as low as one part per billion. So even if someone tried to hide the toxic chemicals, his technique would be able to detect them.

His findings are published online this week in Nature Photonics.

"We still have much work ahead," he said. "We are now working on broadening the range of the laser frequencies that can get the job done. If costs can be reduced and the tech made mobile, the applications could be endless."

A similar principle is used in the medical field to detect biomarkers for different kinds of health conditions, including cancer, by taking breath samples.

It's possible, Vodopyanov said, because of the rules of physics.

"The frequencies of molecules are very distinct, but they are invariant - here, on a different continent, on a different planet, anywhere," Vodopyanov said. "It is universal. Think of it as a molecular fingerprint. So when we use the laser we can detect these fingerprints with great precision."

The novel approach could open the door for developing non-invasive technology, including sensors, that could be used to detect:
  • airborne agents that could be encountered in a biological or chemical attack at home or on the battlefield
  • traces of life by space explorers on missions to other planets or asteroids
To see a video explanation click here: https://youtu.be/PPBZeLLXdoY

Other collaborators on the Nature Photonics paper include Andrey Muraviev at UCF's the College of Optics & Photonics, Viktor Smolski of IPG Photonics -- Mid-Infrared Lasers in Birmingham, AL, and Zachary Loparo from UCF's Department of Mechanical and Aerospace Engineering.

Vodopyanov obtained his doctorate from the Lebedev Physical Institute in Moscow. He's spent years teaching and conducting research in Russia, Germany, the United Kingdom and Stanford University in California before joining UCF in 2013. He's also worked in industry, including the Silicon Valley start-up Picarro, which was developing a laser-based breath analyzer for early detection of ulcers. He's written more than 300 papers and is funded by various organizations including the Defense Advanced Research Projects Agency, Office of Naval Research, Air Force and NASA.
-end-


University of Central Florida

Related Atmosphere Articles:

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.
What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.
Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.
Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.
Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.
The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.
An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.
Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.
Astronomers find exoplanet atmosphere free of clouds
Scientists have detected an exoplanet atmosphere that is free of clouds, marking a pivotal breakthrough in the quest for greater understanding of the planets beyond our solar system.
Helium detected in exoplanet atmosphere for the first time
Astronomers have detected helium in the atmosphere of a planet that orbits a star far beyond our solar system for the very first time.
More Atmosphere News and Atmosphere Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.