Protein 'spat out' by cancer cells promotes tumor growth

March 26, 2019

Prostate cancer cells change the behaviour of other cells around them, including normal cells, by 'spitting out' a protein from their nucleus, new research has found.

The tiny pieces of protein are taken up by the other cells, provoking changes that promote tumour growth and - the researchers believe - help the cancer hide from the body's immune system.

The process has been captured for the first time on video by researchers at the University of Bradford and University of Surrey. The research is published today [26 March] in Scientific Reports.

Lead researcher, Professor Richard Morgan from the University of Bradford, said: "For tumours to survive, grow bigger and spread they need to control the behaviour of cancer cells and the normal cells around them and we've found a means by which they do this. Blocking this process could be a potential target for future cancer therapy."

The research focused on a protein called EN2 that has a role in early development of the brain but has also been found at high levels in many types of cancer cells.

The team highlighted the protein using a green florescent tag. The researchers then studied its activity in human prostate cancer cells, normal prostate cells and in bladder cancer, melanoma and leukaemia cells. They found that both cancer and normal cells took up the protein from other cells.

They also did time lapse photography of prostate cancer cells, taking pictures every five minutes for 24 hours. The resulting video shows the cells eject small parts of themselves containing the green florescent protein that are then taken up by otherwise dormant cancer cells, causing them to reactivate, changing shape or fusing together.

Professor Morgan explains: "We think this is significant because cell fusion in cancer is relatively unusual and is associated with very aggressive disease. It can lead to new and unpredictable hybrid cells that are frequently better at spreading to different sites and surviving chemotherapy and radiotherapy."

Molecular analysis of the normal prostate cells showed that take up of EN2 caused them to express a gene called MX2 that generates an anti-viral response.

"We believe the cancer is trying to minimise the chances of the cells around it being infected by a virus, to avoid scrutiny by the immune system," says Professor Morgan.

"This could undermine the effectiveness of immunotherapy treatments, which try to use viruses to kill cancer by stimulating the immune system to attack it."

The researchers were also surprised to find the EN2 protein in the cell membrane as well as in the nucleus - which is very unusual for this type of protein. This provides an opportunity to block its action, and the team were able to identify that part of the protein that was accessible at the cell surface to be a potential target for treatment.

Hardev Pandha, Professor of Medical Oncology at the University of Surrey, says: "This work follows on from earlier studies at Surrey where detection of EN2 in urine, after secretion from prostate cancer cells, was shown to be a robust diagnostic biomarker of prostate cancer. The more we learn about prostate cancer the more that can be done to identify and treat this devastating disease."
-end-


University of Bradford

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.