Artificial womb technology breaks its 4 minute mile

March 26, 2019

A major advancement in pioneering technology based around the use of an artificial womb to save extremely premature babies is being hailed as a medical and biotechnological breakthrough.

Recently published in the medical publication, the American Journal of Obstetrics & Gynecology, the study presents world-first data demonstrating the ability of an artificial placenta-based life support platform to maintain extremely preterm lamb fetuses (600-700g); equivalent to a human fetus at 24 weeks of gestation.

Head of WIRF's Perinatal Research Laboratories and Local Chief Investigator, Associate Professor Matt Kemp, said that whilst previous research had demonstrated the feasibility of extended survival with artificial placenta technology in late preterm fetuses, there was no published evidence that demonstrated the use of the platform to support extremely preterm fetuses - the eventual clinical target of this technology.

"For several decades there has been little improvement in outcomes of extremely preterm infants born at the border of viability (21-24 weeks gestation)," Assoc Prof Kemp said.

"In the AJOG study, we have proven the use of this technology to support, for the first time, extremely preterm lambs equivalent to 24 weeks of human gestation in a stable, growth-normal state for five days.

"This result underscores the potential clinical application of this technology for extremely preterm infants born at the border of viability. In the world of artificial placenta technology, we have effectively broken the 4 minute mile."

Assoc Professor Matt Kemp said the latest findings represent a significant milestone in the technology's future implementation into clinical use.

"If we are to improve outcomes for babies born at the border of viability we must recognise that they are not 'small babies'; rather, they are a unique patient demographic that, due to their extremely underdeveloped lungs and limited cardiovascular capacity, require an entirely different treatment approach from older preterm infants.

"The technology was designed to revolutionise the treatment of severely premature newborns. The goal is to offer a bridge between a natural womb and the outside world to give babies born at the earliest gestational ages more time for their fragile lungs to mature.

"With additional refinement, what today might be considered as futuristic technology might soon not be so futuristic and might be standard of care."
-end-
The EVE Therapy project brings together leading academic researchers from the Women and Infants Research Foundation, The University of Western Australia and Tohoku University Hospital, Japan, and is undertaken in close partnership with one of Japan's foremost biomedical technology companies, Nipro Corporation.

Perth-based researchers, including Visiting Fellow and project development head Dr Haruo Usuda, work year-round with researchers from Tohoku University Hospital in Sendai (led by A/Prof Masatoshi Saito and Dr Shimpei Watanabe) and the Artificial Placenta Development Team at Nipro Corporation in Osaka (led by Mr Shinichi Kawamura).

Tohoku University

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.