Half a degree more warming may cause dramatic differences on drought-flood compound risks

March 26, 2019

Tokyo, Japan - In 2015, to combat the urgent threats posed by climate change, most of the world's countries came together to establish the Paris Agreement: an ambitious plan to prevent the global temperature from rising 2°C above pre-industrial levels, and to work to further limit that temperature rise to 1.5°C.

These seemingly small numbers can mask the staggering impact and complexity that shifts in global temperature represent. For example, increased global temperature will also intensify the hydrologic cycle, significantly changing the frequency and intensity of rainfall. Flooding, droughts, mudslides, and food and water insecurity are just some of the many hazards of the resulting changes in rainfall patterns.

To understand what the future may hold, and to shape policies and behaviors that guide this outcome, researchers at The University of Tokyo, along with international collaborators, have developed a new metric for evaluating the intensification of wet and dry spells under the effects of global warming. They call it the "event-to-event hydrological intensification index," or E2E, as described in a new study published in Scientific Reports.

"The E2E combines normalized aggregated precipitation intensity and dry spell length to capture the interconnectivity of adjacent dry and wet spells and the intensification of their phase shifts," explains corresponding author Hyungjun Kim.

The research team conducted multi-model ensemble experiments to compare the E2E between scenarios with 1.5°C and 2°C of warming. Overall, warming was associated with a clear increase in the E2E, with significant additional increase from 1.5°C to 2.0°C of warming.

In addition, the study revealed geographic trends in changes in rainfall intensity under these warming scenarios. For example, more intense precipitation is predicted across much of North America and Eurasia, whereas more intense droughts are projected for the Mediterranean region. Another key finding was that the most extreme intensification would be about 10 times greater than the average intensification.

"Our results suggest that extreme dry and wet events will increasingly co-occur, such as the switch from extreme drought to severe flooding we saw in California in the recent past," says lead author Gavin D. Madakumbura. "At least in terms of disaster mitigation and water security, there would be significant benefits to limiting global warming to 1.5°C to dampen the intensification of event-to-event variability."
-end-
The article, "Event-to-event intensification of the hydrologic cycle from 1.5°C to a 2°C warmer world," was published in Scientific Reports at DOI: https://doi.org/10.1038/s41598-019-39936-2.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Institute of Industrial Science, The University of Tokyo

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.