Salmonella could be combated by enhancing body's natural process

March 26, 2019

Autophagy - the process of recycling cellular material in the body, can help combat Salmonella and other pathogens according to researchers at the School of Life Sciences, University of Warwick who have studied how autophagy can get rid of bacteria, and prevent diseases developing.

An interdisciplinary team of researchers led by Dr Ioannis Nezis from the School of Life Sciences, University of Warwick, and Dr Tamas Korscmaros from Earlham Institute and Quadram Institute, Norwich, UK screened the proteome from 56 pathogenic bacterial species - to see how autophagy reacts with them.

Some of the 56 species screened included Salmonella, Shigella, Listeria, Mycobacterium tuberculosis and Staphylococcus. They identified how host cells use autophagy to clear invading bacteria, but also how bacteria use their proteins to escape this clearance.

They found that host cells use autophagy to target specific bacterial proteins for recycling. These bacterial proteins could be used by the bacteria to help them escape their clearance.

Salmonella is a food born pathogenic bacterium and it is the second most common cause of childhood mortality in the developing world. Understanding how host cells sense and combat Salmonella infection would lead to new therapies. They identified Salmonella YhjJ protein which interacts with autophagy protein LC3 and can cleave other autophagy proteins to inhibit their function.

Dr Ioannis Nezis commented: "Our systems-level analysis has highlighted the complex interplay between host autophagy and bacteria to inspire future experimental studies to elucidate the detailed molecular mechanisms of autophagy in the pathogenesis of bacterial infections.

"With drug resistance being on the rise worldwide, bacterial infections pose one of the greatest global threats to human health. Using activators of autophagy with antibiotics, as antibiotic resistance breakers, would be a very promising way to fight bacterial infections"

Research can now look at identifying natural products that can boost autophagy and decrease the likelihood of developing infections as well as treating them.
-end-
For previous research of Nezis' group (see https://warwick.ac.uk/newsandevents/pressreleases/colon_cancer_breakthrough )

The paper, 'Targeted interplay between bacterial pathogens and host autophagy.' by Padhmanand Sudhakar, Anne Claire-Jacomin, Isabelle Hautefort, Siva Samavedam, Koorosh Fatemian, Eszter Ari, Leila Gul, Amanda Demeter, Emily Jones, Tamas Korcsmaros and Ioannis P. Nezis, is published in Autophagy journal on 26 March 2019

It is funded by the Biotechnology and Biological Sciences Research Council.

NOTES TO EDITORS

Paper available to view at: https://www.tandfonline.com/doi/full/10.1080/15548627.2019.1590519

High-res images available at: https://warwick.ac.uk/services/communications/medialibrary/images/march2019/iaonnis_autophagy.jpg

FOR MORE INFORMATION PLEASE CONTACT

Alice Scott, Media Relations Manager, University of Warwick
Tel: 02476 574 255 or 07920 531 221
E-mail: alice.j.scott@warwick.ac.uk

University of Warwick

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.