Nav: Home

HIV/tuberculosis co-infection: Tunneling towards better diagnosis

March 26, 2019

1.2 million people in the world are co-infected by Mycobacterium tuberculosis, the bacteria which causes tuberculosis, and AIDS (HIV-1). This combination is deadly: it makes patient diagnosis and treatment difficult, and increases the pathogenicity of these two infectious agents. An international team led by researchers at the CNRS and Inserm have revealed that in the presence of tuberculosis, HIV-1 moves from one cell to the next via nanotubes which form between macrophages, drastically increasing the percentage of infected cells. These findings appear in the 26 March 2019 edition of Cell Reports.

Researchers at the Institute of Pharmacology and Structural biology (CNRS/Université Toulouse III - Paul Sabatier) and the IM-TB/HIV international laboratory, a consortium between the CNRS and the National Scientific and Technical Research Council (Conicet) (Argentina), together with the Center for Pathophysiology of Toulouse Purpan (CNRS/INSERM/Université Toulouse III - Paul Sabatier), have shown that macrophages - which act as host cells for tuberculosis and HIV-1, join to form nanotubes when exposed to Interleukin-10, a molecule secreted in the presence of tuberculosis. The abundance of these specific M(IL-10) macrophages in the lungs is correlated with the severity of the disease. HIV-1 particles travel through these tunnel-like nanotubes to infect neighbouring cells and multiply. Using different approaches to inhibit their formation, scientists successfully reduced viral transfer between macrophages, leading to a drop in HIV-1 production.

In a case of severe TB, the development of nanotubes between macrophages accelerates, increasing the spread of the AIDS virus and viral production as a result. Because the presence of this specific type of macrophage can be measured, diagnosis and treatment of patients suffering from both illnesses could be made easier. This research paves the way to new therapeutic approaches aimed at limiting viral load increases in tuberculosis patients.
-end-


CNRS

Related Tuberculosis Articles:

Blocking the iron transport could stop tuberculosis
The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply.
Tuberculosis: New insights into the pathogen
Researchers at the University of Würzburg and the Spanish Cancer Research Centre have gained new insights into the pathogen that causes tuberculosis.
Unmasking the hidden burden of tuberculosis in Mozambique
The real burden of tuberculosis is probably higher than estimated, according to a study on samples from autopsies performed in a Mozambican hospital.
HIV/tuberculosis co-infection: Tunneling towards better diagnosis
1.2 million people in the world are co-infected by the bacteria which causes tuberculosis and AIDS.
Reducing the burden of tuberculosis treatment
A research team led by MIT has developed a device that can lodge in the stomach and deliver antibiotics to treat tuberculosis, which they hope will make it easier to cure more patients and reduce health care costs.
Tuberculosis: Commandeering a bacterial 'suicide' mechanism
The bacteria responsible for tuberculosis can be killed by a toxin they produce unless it is neutralized by an antidote protein.
A copper bullet for tuberculosis
Tuberculosis is a sneaky disease, and the number one cause of death from infectious disease worldwide.
How damaging immune cells develop during tuberculosis
Insights into how harmful white blood cells form during tuberculosis infection point to novel targets for pharmacological interventions, according to a study published in the open-access journal PLOS Pathogens by Valentina Guerrini and Maria Laura Gennaro of Rutgers New Jersey Medical School, and colleagues.
How many people die from tuberculosis every year?
The estimates for global tuberculosis deaths by the World Health Organisation (WHO) and the Institute for Health Metrics and Evaluation (IHME) differ considerably for a dozen countries, according to a study led by ISGlobal.
Beyond killing tuberculosis
Historically, our view of host defense against infection was that we must eliminate pathogens to eradicate disease.
More Tuberculosis News and Tuberculosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.