Technique uses well-known dye to watch amyloid plaques in the brain

March 26, 2019

TUCSON, Ariz. - While amyloid plaques have long been closely associated with mechanisms driving Alzheimer's disease, visualizing how amyloid proteins assemble continues to prove difficult. The nanometer-sized amyloid fibrils are only a fraction of the size that the best light microscopes are able to resolve. New work repurposing one of the oldest known reagents for amyloid looks to help provide a clearer picture of how fibrils come together.

A team of researchers from Washington University in St. Louis, U.S.A., and University College London in the U.K., has demonstrated a novel approach for nanoscale imaging of amyloid structures without chemically altering them. Using Thioflavin T (ThT), a dye known for nearly a century to fluoresce when in contact with amyloid fibrils, the new method allows researchers to visualize proteins associated with amyloid plaques, called Aβ42 and Aβ40, more precisely than ever.

Kevin Spehar, a lead co-author from the team, will describe their work in an oral presentation, titled "Long-Term Super-Resolution Imaging of Amyloid Structures Using Transient Binding of Thioflavin T," at the OSA Biophotonics Congress: Optics in the Life Sciences meeting in Tucson, Ariz., U.S.A., 14-17 April 2019.

In addition to producing images of amyloid aggregates with nanoscale resolution, the group's technique lets researchers take snapshots of how fibrils build up and react to their environment. Testing their approach, the team was able to see directly for the first time an anti-amyloid drug at work.

"When it comes to amyloid, we use words like 'monomer' and 'oligomer' and 'fibril,' but those words only really describe what we've been able to see before," said paper co-author Dr. Matthew Lew. "Those words are completely inadequate for precisely describing the complex, varying assemblies of these molecules."

While attacking amyloid assembly methods stands out as a leading proposed therapy for Alzheimer's disease, Dr. Jan Bieschke, another co-author of the paper, said that studying amyloid aggregates presents unique challenges for researchers.

Immunofluorescent techniques, which are employed in many other areas of biology and use antibodies to label biomolecules, fall short because they would disrupt amyloid's tendency to aggregate, making it impossible to accurately study the mechanism that drives Alzheimer's.

Cryoelectron microscopy offers superior resolution but can only provide a single, static snapshot of an amyloid sample.

"Imaging amyloid dynamics for extended times is crucial if we want to understand the way a drug affects amyloid aggregation or how it disassembles an amyloid fiber," Bieschke said.

To tackle these issues, the team turned to the long-established fluorophore, ThT, which avoids modifying amyloid by not covalently binding to it in the first place. Instead, each ThT molecule fluoresces for about 15 milliseconds while in contact with amyloid.

The result, Lew said, is that ThT's role in imaging shifts from a simple fluorophore to a molecular sensor for amyloid.

"This is literally using a one- to two-nanometer molecule as a sensor," he said. "I think this concept has a lot of potential to be generalized for biomedical and chemical imaging applications."

The imaging let the team watch how Aβ42 fibrils remodeled and dissolved with the introduction of epi-gallocatechin gallate, a model anti-aggregation drug Bieschke and colleagues discovered.

"Most fluorescence microscopy techniques, especially when aiming for nanometer resolution, require careful fine-tuning of reagents and conditions," Bieschke said. "Our approach removed much of that complexity. At the same time, it can be combined with traditional antibody-based approaches for multiplexed imaging."

Bieschke hopes to improve the technique to be able to see the way amyloid structures spread in Alzheimer's and related diseases. Lew said he sees many future uses for using molecules like ThT as molecular sensors, ranging from research in Parkinson's disease to diabetes to materials science.
-end-
Registration Information

Credentialed media and analysts who wish to cover OSA Biophotonics Congress: Optics in the Life Sciences should send registration requests to: mediarelations@osa.org.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

mediarelations@osa.org

Authors: Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedia, Jin Lu, George R. Nahass, Matthew D. Lew, and Jan Bieschke

Author Affiliations: Washington University in St. Louis, University College, London

Contact: mdlew@wustl.edu, j.bieschke@ucl.ac.uk

The Optical Society

Related Amyloid Plaques Articles from Brightsurf:

Amyloid deposits not associated with depression in the elderly
Researchers have suspected that Aβ deposits might also underlie the cognitive decline seen in older people with depression, however a new study from researchers at the University of California, San Francisco (UCSF) has found that abnormal Aβ deposits were actually found in fewer older adults with major depression compared to non-depressed control subjects.

Nanodevices for the brain could thwart formation of Alzheimer's plaques
Researchers designed a nanodevice with the potential to prevent peptides from forming dangerous plaques in the brain in order to halt development of Alzheimer's disease.

New mathematical model for amyloid formation
Scientists report on a mathematical model for the formation of amyloid fibrils.

Nanoparticle chomps away plaques that cause heart attacks
Michigan State University and Stanford University scientists have invented a nanoparticle that eats away -- from the inside out -- portions of plaques that cause heart attacks.

What comes first, beta-amyloid plaques or thinking and memory problems?
The scientific community has long believed that beta-amyloid, a protein that can clump together and form sticky plaques in the brain, is the first sign of Alzheimer's disease.

Staging β-amyloid pathology with amyloid positron emission tomography
This multicenter study used in vivo β-amyloid cerebrospinal fluid, a biomarker of Alzheimer disease, and positron emission tomography findings to track progression of Alzheimer disease over six years among study participants.

Alzheimer's disease protein links plaques to cell death in mice
A new protein involved in Alzheimer's disease (AD) has been identified by researchers at the RIKEN Center for Brain Science (CBS).

Atherosclerosis: Induced cell death destabilizes plaques
Many chronic disorders arise from misdirected immune responses. A Ludwig-Maximilians-Universitaet (LMU) in Munich team led by Oliver Söhnlein now shows that neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death and that a tailored peptide inhibits the process.

Stranded dolphins have amyloid plaques in their brains
Dolphins stranded on the beaches of Florida and Massachusetts show in their brains amyloid plaques, a hallmark in human beings of Alzheimer's disease, together with an environmental toxin produced by cyanobacterial blooms.

Technique uses well-known dye to watch amyloid plaques in the brain
New work repurposing one of the oldest known reagents for amyloid looks to help provide a clearer picture of how fibrils come together.

Read More: Amyloid Plaques News and Amyloid Plaques Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.