Nav: Home

Venus flytrap 'teeth' form a 'horrid prison' for medium-sized prey

March 26, 2019

In "Testing Darwin's Hypothesis about the Wonderful Venus Flytrap: Marginal Spikes Form a 'Horrid Prison' for Moderate-Sized Insect Prey," Alexander L. Davis investigates the importance of marginal spikes, the "teeth" lining the outer edge of the plant's snap traps, in successfully capturing prey. He found that Venus flytraps experience a 90 percent decrease in moderate-sized cricket prey capture success when marginal spikes are removed. This effect disappears, however, for larger prey, suggesting that the spikes may provide a foothold for large prey to escape.

The study combined field observations, laboratory experiments and semi-natural experiments, and was the first to test the adaptive benefit of marginal spikes, one of Darwin's original hypotheses about the Venus flytrap. "We provide the first direct test of how prey capture performance is affected by the presence of marginal spikes, trichomes that provide a novel function in Venus flytraps by forming what Darwin described as a 'horrid prison,'" Davis writes.

Botanical carnivory is a novel feeding strategy that has arisen at least nine different times in evolutionary history of plants. Pitfall traps evolved independently at least six times and sticky traps five. The snap traps characteristic of the Venus flytrap, however, have most likely evolved only once in the ancestral lineage. Darwin was the first to document evidence for carnivory in flytraps, and proposed that the cage-like structure enhances prey capture success.

For the laboratory portion, Davis and his coauthors assembled "prey capture arenas," wherein 34 Venus flytraps were set up in planters with "on ramps" for crickets. The number of individual traps open and closed, along with whether or not the closed traps contained prey, were recorded initially, after three days, and again after a week. Davis then removed the marginal spikes from half of the plants. He allowed a week of recovery so the traps could reopen, and conducted a second trial. Cricket mass, the length of the plants' traps, and the prey capture success rate of the traps on each plant were recorded and analyzed using logistic regression models.

Davis and coauthors then moved to a semi-natural experiment in the North Carolina Botanical Garden. Davis placed 22 plants in the North Carolina Botanical Garden, with half of the traps on each plant with intact marginal spikes and the other half with the spikes removed. Plants were kept on the group in a forested, open area of the gardens, and with ramps that allowed terrestrial arthropod access for a period of 4 weeks. For all prey catches, trap length, as well as prey mass and -- digestion permitting -- prey type, were recorded. Results were calculated using a generalized linear mixed effects model, then combined with results from the laboratory experiments using Fisher's method.

Davis found that marginal spikes are adaptive for prey capture of small and medium-sized insects, but not larger insects. In the controlled laboratory prey capture trials, 16.5% of trap closures resulted in successful prey capture, whereas only 5.8% of trap closures were successful when marginal spikes were removed. Similarly, plants in the botanical garden had a prey capture success rate of 13.3% with marginal spikes intact and 9.2% with spikes removed.

The benefits of the marginal spikes were most dramatic for medium-size traps, which experienced the most rapid decline in capture rate for medium-size prey and gained the most from having the marginal spikes intact. Surprisingly, this effect disappeared for larger prey, which Davis speculated could be due to larger insects using the spikes as leverage for prying themselves free.

These findings offer clues for explaining the evolution of one of the most unique plant traits. "Characterizing the role of adaptive traits aids our understanding of selective forces underlying the diversity of trap types and the rarity of snap traps, offering insights into the origins of one of the most wonderful evolutionary innovations among all plants," Davis writes.
-end-


University of Chicago Press Journals

Related Plants Articles:

Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
How plants can tell friend from foe
The plant's immune system can recognize whether a piece of RNA is an invader or not based on whether the RNA has a threaded bead-like structure at the end, say University of Tokyo researchers.
Plants at the pump
Regular, unleaded or algae? That's a choice drivers could make at the pump one day.
How do people choose what plants to use?
There are about 400,000 species of plants in the world.
Defend or grow? These plants do both
From natural ecosystems to farmers' fields, plants face a dilemma of energy use: outgrow and outcompete their neighbors for light, or defend themselves against insects and disease.
More Plants News and Plants Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...