Nav: Home

Deciphering the walnut genome

March 26, 2019

California produces 99 percent of the walnuts grown in the United States. New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

In a new study, a team of scientists at the University of California, Davis, and USDA's Agricultural Research Service (ARS) used a unique approach to sequence the genomes of the English walnut and its wild North American relative by tapping into the capabilities of two state-of-the-art technologies: long-read DNA sequencing and optical genome mapping. The resulting genome sequences are believed to be of the highest quality ever assembled of any woody perennial.

"By sequencing the genome of a walnut hybrid, we produced complete genome sequences for both parents in the time normally required to produce the sequence of one genome," said Ming-Cheng Luo, leading genomics investigator on the project and a research geneticist in the Department of Plant Sciences at UC Davis.

This approach could be applied to genome sequencing of trees and many other woody perennials, opening the door to a better understanding of the genetic blueprints of almonds, pecans, pistachios and grapes.

"Like walnut, these other crops naturally cross-pollinate and are therefore highly variable," said Jan Dvorak, co-principal investigator and genetics professor at the Department of Plant Sciences at UC Davis. "Variability has always greatly complicated our ability to produce a high-quality genome sequence for such crops, but these new technologies now make it possible," Dvorak added.

In California, walnuts are grown commercially using rootstocks chosen specifically for their ability to tolerate various soil-borne diseases.

"We chose to cross the widely used English walnut specifically with the wild Texas black walnut because of its native resistance to several soil-borne diseases and root nematodes, which are serious pests of walnut in California," said Dan Kluepfel, a USDA-ARS scientist and principal investigator of the walnut-rootstock development project.

The assembled genome sequences of the two walnut species also will now help researchers identify genetic markers that breeders can use to develop new varieties with improved pathogen and pest resistance.
-end-
Major contributors to the project included UC Davis scientists Tingting Zhu, Le Wang, and Agriculture and Agri-Food Canada scientist Frank You.

The study was published online Monday (March 25) in Horticulture Research. The research was funded by the California Walnut Board and the USDA's National Institute of Food and Agriculture Specialty Crop Research Initiative.

University of California - Davis

Related Genome Articles:

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
A new genome for regeneration research
The first complete genome assembly of planarian flatworm reveals a treasure trove on the function and evolution of genes.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.