Nav: Home

New 'more effective' stem cell transplant method could aid blood cancer patients

March 26, 2020

Researchers at UCL have developed a new way to make blood stem cells present in the umbilical cord 'more transplantable', a finding in mice which could improve the treatment of a wide range of blood diseases in children and adults.

Blood stem cells, also known as haematopoietic stem cells (HSCs), generate every type of cell in the blood (red cells, white cells and platelets), and are responsible for maintaining blood production throughout life.

When treating certain cancers and inherited blood disorders, it is sometimes necessary to replace the bone marrow by allogeneic stem cell transplantation - which involves using stem cells from a healthy donor.

The umbilical cord is a useful source of blood stem cells, and cord blood transplants lead to fewer long-term immune complications than bone marrow transplants. Although umbilical cord transplants have been used in young children for the last 30 years, most cord blood units* contain insufficient HSCs to be suitable for older children and adults and 30% of all units contain too few even for the youngest children, and go to waste.

The study, published in the journal Cell Stem Cell, highlights how a protein called NOV/CCN3, which is normally found at low levels in the blood, can be used to rapidly increase the number HSCs in single umbilical cord blood units that are capable of transplantation. This finding potentially opens the door to units that would otherwise be discarded being made available for patients of all ages.

"Trying to increase the actual number of hematopoietic stem cells in umbilical cord blood is both expensive and challenging. It is known that not all HSCs present in a cord blood unit can or will transplant, indicating that cord blood units have untapped transplantation potential," explained Dr Rajeev Gupta, Clinical Associate Professor at UCL Cancer Institute and first author of the study.

"We explored an alternative approach to harness this potential by increasing the functionality - rather than the number - of HSCs, and so enhance the ability of umbilical cord blood units to transplant.

"We'd previously discovered that a regulatory protein known as NOV is essential for the normal function of human HSCs, and so we asked whether highly purified NOV might be used to manipulate cord blood HSCs to make them more transplantable."

Using cell cultures and mouse models in the lab, the research team at UCL Cancer Institute found that umbilical cord blood units exposed to NOV showed significantly more transplantation potential than regular samples. In fact, the frequency of functional HSCs in the sample increased six-fold. Strikingly, these effects were achieved with only an eight-hour exposure.

"Using NOV, we've shown that we can rapidly manipulate blood stem cells to alter their state - changing non-functioning HSCs to functioning HSCs - which enhances cord blood engraftment potential. This finding offers a new strategy for improving blood transplants. The next stage will be to take our research into a clinical setting to explore how this can benefit patients with blood cancers and other blood disorders," said Dr Gupta.

Commenting on the study, Professor Alejandro Madrigal, Scientific Director of the Anthony Nolan Institute, and a world-leading scientist in the field of stem cell transplantation, said: "Cord blood transplantation has been shown to improve engraftment and provide a better outcome for many people. However, unfortunately, stem cells numbers in many cord blood units might be inadequate for optimal transplantation.

"This research is extremely encouraging, since with the simple addition of NOV/CCN3, there is an increase in the functionality of existing stem cells.

"This practical solution could enable many more cord blood units, which have a limited number of stem cells, to be made available for transplantation and could make a huge difference to the many patients."
-end-
This research was funded by the Medical Research Council (UK), Bloodwise, Cancer Research UK and donations from CureCancer@UCL.

*A 'cord blood unit' is one sample of blood retrieved from one umbilical cord.

University College London

Related Stem Cells Articles:

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.