Nav: Home

Brain mapping study suggests motor regions for the hand also connect to the entire body

March 26, 2020

Mapping different parts of the brain and determining how they correspond to thoughts, actions, and other neural functions is a central area of inquiry in neuroscience, but while previous studies using fMRI scans and EEG have allowed researchers to rough out brain areas connected with different types of neural activities, they have not allowed for mapping the activity of individual neurons.

Now in a paper publishing March 26 in the journal Cell, investigators report that they have used microelectrode arrays implanted in the brains of two people to map out motor functions down to the level of the single nerve cell. The study revealed that an area believed to control only one body part actually operates across a wide range of motor functions. It also demonstrated how different neurons coordinate with each other.

"This research shows for the first time that an area of the brain previously thought to be connected only to the arm and hand has information about the entire body," says first author Frank Willett, a postdoctoral fellow in the Neural Prosthetics Translational Laboratory at Stanford University and the Howard Hughes Medical Institute. "We also found that this area has a shared neural code that links all the body parts together."

The study, a collaboration between neuroscientists at Stanford and Brown University, is part of BrainGate2, a multisite pilot clinical trial focused on developing and testing medical devices to restore communication and independence in people affected by neurological conditions like paralysis and locked-in syndrome. A major focus of the Stanford team has been developing ways to restore the ability of these people to communicate through brain-computer interfaces (BCIs).

The new study involved two participants who have chronic tetraplegia--partial or total loss of function in all four limbs. One of them has a high-level spinal cord injury and the other has amyotrophic lateral sclerosis. Both have electrodes implanted in the so-called hand knob area of the motor cortex of their brains. This area--named in part for its knoblike shape--was previously thought to control movement in the hands and arms only.

The investigators used the electrodes to measure the action potentials in single neurons when the participants were asked to attempt to do certain tasks--for example, lifting a finger or turning an ankle. The researchers looked at how the microarrays in the brain were activated. They were surprised to find that the hand knob area was activated not only by movements in the hand and arm, but also in the leg, face, and other parts of the body.

"Another thing we looked at in this study was matching movements of the arms and legs," Willett says, "for example, moving your wrist up or moving your ankle up. We would have expected the resulting patterns of neural activity in motor cortex to be different, because they are a completely different set of muscles. We actually found that they were much more similar than we would have expected." These findings reveal an unexpected link between all four limbs in motor cortex that might help the brain to transfer skills learned with one limb to another one.

Willett says that the new findings have important implications for the development of BCIs to help people who are paralyzed to move again. "We used to think that to control different parts of the body, we would need to put implants in many areas spread out across the brain," he notes. "It's exciting, because now we can explore controlling movements throughout the whole body with an implant in only one area."

One important potential application for BCIs is allowing people who are paralyzed or have locked-in syndrome to communicate by controlling a computer mouse or other device. "It may be that we can connect different body movements to different types of computer clicks," Willett says. "We hope we can leverage these different signals more accurately to enable someone who can't talk to use a computer, since neural signals from different body parts are easier for a BCI to tease apart than those from the arm or hand alone."
-end-
This work was supported by the Office of Research and Development, Rehabilitation R and D Service, Department of Veterans Affairs, the Executive Committee on Research of Massachusetts General Hospital, NIDCD, NINDS, Larry and Pamela Garlick, Samuel and Betsy Reeves, the Wu Tsai Neuroscience Institute at Stanford, the Simons Foundation Collaboration on the Global Brain, the Office of Naval Research, and the Howard Hughes Medical Institute.

Cell, Willett et al. "Hand Knob Area of Premotor Cortex Represents the Whole Body in a Compositional Way" https://www.cell.com/cell/fulltext/S0092-8674(20)30220-8

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Brain Articles:

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.