Designing lightweight glass for efficient cars, wind turbines

March 26, 2020

A new machine-learning algorithm for exploring lightweight, very stiff glass compositions can help design next-gen materials for more efficient vehicles and wind turbines. Glasses can reinforce polymers to generate composite materials that provide similar strengths as metals but with less weight.

Liang Qi, a professor of materials science and engineering at the University of Michigan, answered questions about his group's new paper in npj Computational Materials.

What is elastic stiffness? Elastic and glass don't seem to be two words that go together.

All solid materials, including glass, have a property called elastic stiffness--also known as elastic modulus. It's a measure of how much force per unit area is needed to make the material bend or stretch. If that change is elastic, the material can totally recover its original shape and size once you stop the force.

Why do we want light and very stiff glasses?

Elastic stiffness is critical for any materials in structural applications. Higher stiffness means that you can sustain the same force loading with a thinner material. For example, the structural glass in car windshields, and in touch screens on smartphones and other screens, can be made thinner and lighter if the glasses are stiffer. Glass fiber composites are widely used lightweight materials for cars, trucks and wind turbines, and we can make these parts even lighter.

Lighter vehicles can go further on a gallon of gas--6-8% further for a 10% reduction in weight, according to the U.S. Office of Energy Efficiency and Renewable Energy. Weight reduction can also significantly increase the range of electric vehicles.

Lighter, stiffer glass can enable wind turbine blades to transfer wind power into electricity more efficiently because less wind power is "wasted" to make the blades rotate. It can also enable longer wind turbine blades, which can generate more electricity under the same wind speed.

What are the challenges in trying to design light but resilient glasses?

Because glasses are amorphous--or disordered--materials, it's hard to predict their atomistic structures and the corresponding physical/chemical properties. We use computer simulations to speed up the study of glasses, but they require so much computing time that it is impossible to investigate each possible glass composition.

The other problem is that we don't have enough data about glass compositions for machine learning to be effective at predicting glass properties for new glass compositions. Machine learning algorithms are fed data, and they find patterns in the data that enable them to make predictions. But without enough of the right training data, their predictions aren't reliable--just like a political poll conducted in Ohio cannot predict the election in Michigan.

How did you overcome these barriers?

First, we used existing high-throughput computer simulations to generate data on the densities and elastic stiffnesses of various glasses. Second, we developed the machine learning model that is more suitable for a small amount of data--because we still didn't have a lot of data by machine learning standards. We designed it so that the key thing it pays attention to is the strength of the interaction between atoms. In essence, we used physics to give it hints about what was important in the data, and that improves the quality of its predictions for new compositions.

What can your model do?

While we trained our machine learning model with glasses made of silicon dioxide and one or two other additives, we found that it could accurately predict the lightness and elastic stiffness of more complex glasses, with more than 10 different components. It can screen as many as 100,000 different compositions at once.

What are the next steps?

Lightness and elastic stiffness are only two properties that are important in designing glasses. We also need to know their strength, toughness, and their melting temperatures. By openly sharing our data and methods, we hope to inspire the development of new models in the glass research community.
The research was supported by Continental Technology, based in Indianapolis.

Study abstract:

Predicting densities and elastic moduli of SiO2-based glasses by machine learning


University of Michigan

Related Wind Turbines Articles from Brightsurf:

Supersized wind turbines generate clean energy--and surprising physics
As wind energy scales up, researchers study the fluid dynamics challenges.

Safe flight: New method detects onset of destructive oscillations in aircraft turbines
''Flutter'' is a complex oscillatory phenomenon that can destroy aircraft turbine blades and has historically been the cause of several plane accidents.

New system uses wind turbines to defend the national grid from power cuts
A 'smart' system that controls the storage and release of energy from wind turbines will reduce the risk of power cuts and support the increase of wind energy use world-wide, say researchers at the University of Birmingham.

Wind beneath their wings: Albatrosses fine-tuned to wind conditions
A new study of albatrosses has found that wind plays a bigger role in their decision to take flight than previously thought, and due to their differences in body size, males and females differ in their response to wind.

Designing lightweight glass for efficient cars, wind turbines
A new machine-learning algorithm for exploring lightweight, very stiff glass compositions can help design next-gen materials for more efficient vehicles and wind turbines.

Quadrupling turbines, US can meet 2030 wind-energy goals
The United States could generate 20% of its electricity from wind within 10 years, without requiring any additional land, according to Cornell University research published in Nature Scientific Reports.

Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.

Wind and water
Damaging rains from hurricanes can be more intense after winds begin to subside, say UC Santa Barbara scientists.

Silverswords may be gone with the wind
In a new study in the Ecological Society of America's journal Ecological Monographs, researchers seek to understand recent population declines of Haleakalā silverswords and identify conservation strategies for the future.

Computer models show clear advantages in new types of wind turbines
Researchers from Aarhus University and Durham University have modelled the fluid dynamics of multi-rotor wind turbines via high-resolution numerical simulations.

Read More: Wind Turbines News and Wind Turbines Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to