Nav: Home

Upgrading biomass with selective surface-modified catalysts

March 26, 2020

UPTON, NY--Scientists have designed a catalyst composed of very low concentrations of platinum (single atoms and clusters smaller than billionths of a meter) on the surface of titanium dioxide. They demonstrated how this catalyst significantly enhances the rate of breaking a particular carbon-oxygen bond for the conversion of a plant derivative (furfuryl alcohol) into a potential biofuel (2-methylfuran). Their strategy--described in a paper published in Nature Catalysis on Mar. 23--could be applied to design stable, active, and selective catalysts based on a wide range of metals supported on metal oxides to produce industrially useful chemicals and fuels from biomass-derived molecules.

"For a molecule to generate a particular product, the reaction has to be directed along a certain pathway because many side reactions that are not selective for the desired product are possible," explained co-author Anibal Boscoboinik, a staff scientist in the Center for Functional Nanomaterials (CFN) Interface Science and Catalysis Group at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory. "To convert furfuryl alcohol into biofuel, the bond between carbon and oxygen atoms on the side group attached to the ring-shaped part of the molecule must be broken, without producing any reactions in the ring. Typically, the metal catalyst that breaks this bond also activates ring-related reactions. However, the catalyst designed in this study only breaks the side group carbon-oxygen bond."

Aromatic rings are structures with atoms connected through single or double bonds. In molecules derived from plant waste, aromatic rings often have oxygen-containing side groups. Transforming plant waste derivatives into useful products requires the removal of oxygen from these side groups by breaking specific carbon-oxygen bonds.

"Biomass contains a lot of oxygen, which needs to be partially removed to leave behind more useful molecules for the production of renewable fuels, plastics, and high-performance lubricants," said co-first author Jiayi Fu, a graduate student at the Catalysis Center for Energy Innovation (CCEI) at the University of Delaware (UD). "Hydrodeoxygenation, a reaction in which hydrogen is used as a reactant to remove oxygen from a molecule, is useful for converting biomass into value-added products."

In this study, the scientists hypothesized that adding noble metals to the surfaces of moderately reducible metal oxides--those that can lose and gain oxygen atoms--would promote hydrodeoxygenation.

"Removing oxygen from the oxide surface forms an anchoring site where molecules can be held in place so the necessary bonds can be broken and formed," said co-first author and UD CCEI graduate student Jonathan Lym. "Previous studies in the catalysis and semiconductor communities have shown how much impurities can influence the surface."

To test their hypothesis, the team selected platinum as the noble metal and titanium dioxide (titania) as the metal oxide. Theoretical calculations and modeling indicated that the formation of oxygen vacancies is more energetically favorable when single atoms of platinum are introduced onto the surface of titania.

After synthesizing the platinum-titania catalyst at UD, they performed various structural and chemical characterization studies using facilities at Brookhaven and Argonne National Labs. At the CFN Electron Microscopy Facility, they imaged the catalyst at high resolution with a scanning transmission electron microscope. At Brookhaven's National Synchrotron Light Source II (NSLS-II), they used the In situ and Operando Soft X-ray Spectroscopy (IOS) beamline and the Quick X-ray Absorption and Scattering (QAS) beamline to track the chemical (oxidation) state of platinum. Through complementary x-ray spectroscopy studies at Argonne's Advanced Photon Source (APS), they determined the distance between atoms in the catalyst.

"This work is a great example of how scientific user facilities provide researchers with the complementary information needed to understand complex materials," said CFN Director Chuck Black. "The CFN is committed to our partnership with NSLS-II to enable these sorts of studies by scientists from around the world."

Back at Delaware, the team performed reactivity studies in which they put the catalyst and furfuryl alcohol in a reactor and detected the products through gas chromatography, an analytical chemistry separation technique. In addition to these experiments, they theoretically calculated the amount of energy required for different steps of the reaction to proceed. On the basis of these calculations, they ran computer simulations to determine the preferable reaction pathways. The simulated and experimental product distributions both indicated that negligible ring-reaction products are generated when a low concentration of platinum is present. As this concentration is increased, the platinum atoms begin to aggregate into larger clusters that incite ring reactions.

"The complementary experimental and computational framework allows for a detailed understanding of what is happening on the surface of a very complex material in a way that we can generalize concepts for the rational design of catalysts," said Boscoboinik. "These concepts can help in predicting suitable combinations of metals and metal oxides to carry out desired reactions for converting other molecules into valuable products."

"This multimember teamwork can only be enabled by center-like activities," added corresponding author Dionisios Vlachos, the UD Allan & Myra Ferguson Chair of Chemical Engineering.
-end-
This research was supported by CCEI, a DOE Energy Frontier Research Center led by Vlachos at UD. The APS, CFN, and NSLS-II are all DOE Office of Science User Facilities. The experiments conducted at the IOS beamline relied on the ambient-pressure x-ray photoelectron spectroscopy instrument operated as a partnership between NSLS-II and CFN. The QAS beamline is one of the partner beamlines of DOE's Synchrotron Catalysis Consortium, a group that provides support to the catalysis user community.

Brookhaven National Laboratory is supported by the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Follow @BrookhavenLab on Twitter or find us on Facebook.

DOE/Brookhaven National Laboratory

Related Molecules Articles:

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.
Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.