Nav: Home

Paired with super telescopes, model Earths guide hunt for life

March 26, 2020

ITHACA, N.Y. - Cornell University astronomers have created five models representing key points from our planet's evolution, like chemical snapshots through Earth's own geologic epochs.

The models will be spectral templates for astronomers to use in the approaching new era of powerful telescopes, and in the hunt for Earth-like planets in distant solar systems.

"These new generation of space- and ground-based telescopes coupled with our models will allow us to identify planets like our Earth out to about 50 to 100 light-years away," said Lisa Kaltenegger, associate professor of astronomy and director of the Carl Sagan Institute.

For the research and model development, Kaltenegger, doctoral student Jack Madden and Zifan Lin authored "High-Resolution Transmission Spectra of Earth through Geological Time," published in Astrophysical Journal Letters.

"Using our own Earth as the key, we modeled five distinct Earth epochs to provide a template for how we can characterize a potential exo-Earth - from a young, prebiotic Earth to our modern world," she said. "The models also allow us to explore at what point in Earth's evolution a distant observer could identify life on the universe's 'pale blue dots' and other worlds like them."

Kaltenegger and her team created atmospheric models that match the Earth of 3.9 billion years ago, a prebiotic Earth, when carbon dioxide densely cloaked the young planet. A second throwback model chemically depicts a planet free of oxygen, an anoxic Earth, going back 3.5 billion years. Three other models reveal the rise of oxygen in the atmosphere from a 0.2% concentration to modern-day levels of 21%.

"Our Earth and the air we breathe have changed drastically since Earth formed 4.5 billions years ago," Kaltenegger said, "and for the first time, this paper addresses how astronomers trying to find worlds like ours, could spot young to modern Earth-like planets in transit, using our own Earth's history as a template."

In Earth's history, the timeline of the rise of oxygen and its abundancy is not clear, Kaltenegger said. But, if astronomers can find exoplanets with nearly 1% of Earth's current oxygen levels, those scientists will begin to find emerging biology, ozone and methane - and can match it to ages of the Earth templates.

"Our transmission spectra show atmospheric features, which would show a remote observer that Earth had a biosphere as early as about 2 billion years ago," Kaltenegger said.

Using forthcoming telescopes like NASA's James Webb Space Telescope, scheduled to launch in March 2021, or the Extremely Large Telescope in Antofagasta, Chile, scheduled for first light in 2025, astronomers could watch as an exoplanet transits in front of its host star, revealing the planet's atmosphere.

"Once the exoplanet transits and blocks out part of its host star, we can decipher its atmospheric spectral signatures," Kaltenegger said. "Using Earth's geologic history as a key, we can more easily spot the chemical signs of life on the distant exoplanets."
-end-
The research was funded by the Brinson Foundation and the Carl Sagan Institute.

Cornell University

Related Planets Articles:

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.
How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.
Dead planets can 'broadcast' for up to a billion years
Astronomers are planning to hunt for cores of exoplanets around white dwarf stars by 'tuning in' to the radio waves that they emit.
The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.
Five planets revealed after 20 years of observation
To confirm the presence of a planet, it is necessary to wait until it has made one or more revolutions around its star.
Icy giant planets in the laboratory
Giant planets like Neptune may contain much less free hydrogen than previously assumed.
New NASA mission could find more than 1,000 planets
A NASA telescope that will give humans the largest, deepest, clearest picture of the universe since the Hubble Space Telescope could find as many as 1,400 new planets outside Earth's solar system, new research suggests.
Giant planets around young star raise questions about how planets form
Researchers have identified a young star with four Jupiter and Saturn-sized planets in orbit around it, the first time that so many massive planets have been detected in such a young system.
More Planets News and Planets Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.