Nav: Home

Scientists Discover Function For Type III TGF-Beta Receptor

March 26, 1999

Vanderbilt University Medical Center scientists deciphered how the Type III TGF-beta receptor leads to the formation of valves and dividing walls in the heart, reports the March 26th issue of Science.

Their findings have particular relevance to the families of children with congenital heart defects, the leading cause of birth defect-related deaths. About 1 in 100 children born each year in the United States have heart defects, yet little is known about the causes, and surgery is often the only treatment option.

Joey V. Barnett, Ph.D., assistant professor of Medicine and Pharmacology and a member of the division of Cardiovascular Medicine, is interested in the role of growth factors in heart development, particularly how the valves and septa-dividing walls-of the heart are formed.

Their formation begins when the heart is only a simple tube and cells in a region called the atrioventricular (AV) cushion receive a signal that tells them to change shape, pull away from their neighbors and migrate. Those cells eventually multiply and give rise to the heart's valves and septa.

It has been a mystery why only a small population of cells receives the signal to change.

"Their neighbors never undergo this epithelial-mesenchymal transformation," Barnett said. "We wanted to know why, so we asked what cell surface receptors are found on the cells that transform but are missing on the cells that do not."

Transforming growth factor-beta (TGF-beta) has been suspected to play a role in transformation of the AV cushion cells, so Barnett and Christopher B. Brown, Ph.D. focused on the different types of TGF-beta receptors.

In the current report, they show that the Type III TGF-beta receptor is found on those cells in the developing heart that undergo the transformation.

"If we use experimental techniques in an in vitro assay to block this receptor on those cells, they don't transform," Barnett said. "Conversely, if we introduce this receptor into cells that normally would not respond-the neighbor cells, they do transform in response to TGF-beta."

The findings provide strong evidence that the Type III TGF-beta receptor is essential for AV cushion cell response and transformation.

Non-functional Type III TGF-beta receptor might cause some types of congenital heart defects. In fact, many affected children have defects in valves or septa that can be explained by failure of the AV cushion cells to transform and migrate.

Recently, these defects have been associated with damage to a region of chromosome 1 that includes the gene for the Type III TGF-beta receptor. Several groups are working hard to identify mutations in this receptor, Barnett said.

The Type III TGF-beta receptor has been something of a mystery. A complex of Type I and Type II TGF-beta receptors mediates the well-characterized effects of the growth factor TGF-beta on cell growth and differentiation. The Type III TGF-beta receptor is not capable of sending a signal into the cell by itself and was considered to be a facilitator of the Type I/II complex.

"The Type III receptor was the first TGF-beta receptor cloned, but we've been unable to assign a specific biological function for it," Barnett said. "It's remained an orphan in that regard."

The newly defined role for the Type III TGF-beta receptor in AV cushion transformation during heart development sparks questions about how this receptor sends signals.

"Our data suggest that the Type III TGF-beta receptor does more than facilitate transmission through the Type I/II receptor complex," Barnett said. "It looks like it must be using another signaling pathway that is independent of the other two receptor types."

The possibility of a new way for TGF-beta to send signals opens up a whole new area for research into this growth factor's actions.

These studies were supported by grants from the NIH, American Heart Association, and March of Dimes.
-end-


Vanderbilt University Medical Center

Related Cell Growth Articles:

New hydrogels for T-cell growth to be used in cancer immunotherapy
A team with the participation of researchers from the Spanish National Research Council (CSIC) has designed new hydrogels that allow the culture of T-cells or T-lymphocytes, cells of the immune system that are used in cancer immunotherapy since they have the capacity to destroy tumor cells.
Cell phone location used to estimate COVID-19 growth rates
Cell phone location data shows that in counties where activity declined at workplaces and increased at home, coronavirus infection rates were lower.
Biologists unravel tangled mystery of plant cell growth
When cells don't divide into proper copies of themselves, living things fail to grow as they should.
Herringbone pattern in plant cell walls critical to cell growth
Plant cells tend to grow longer instead of wider due to the alignment of the many layers of cellulose that make up their cell walls, according to a new study that may have implications for biofuels research.
Cell growth: Intricate network of potential new regulatory mechanisms has been decoded
Whether a cell grows, divides or dies is controlled among other things by receptors that messenger substances bind to externally.
Cell death or cancer growth: A question of cohesion
Activation of CD95, a receptor found on all cancer cells, triggers programmed cell death -- or does the opposite, namely stimulates cancer cell growth.
A new signaling pathway for mTor-dependent cell growth
A team led by the scientist Volker Haucke (Leibniz - Forschungsinstitut für Molekulare Pharmakologie and Freie Universität Berlin) has now discovered how inactivation of a certain lipid kinase promotes mTor complex 1 activity, and may therefore constitute a new point of attack for the treatment of diabetes and cancer.
New alternate cell growth pathway could lead to better treatments for metastatic cancers
A UCLA Dentistry led research study has found that the gene, mEAK-7, which they discovered last year, may play a key role in cancer metastasis.
Timed release of turmeric stops cancer cell growth
A WSU research team has developed a drug delivery system using curcumin, the main ingredient in the spice turmeric, that successfully inhibits bone cancer cells while promoting growth of healthy bone cells.
Stem cell growth accelerated by tropoelastin protein
Tropoelastin, the raw material used to create 'MeTro' elastic surgical glue developed with the University of Sydney, has been found to encourage stem cell growth -- with the potential to ultimately help the body repair itself.
More Cell Growth News and Cell Growth Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.