Nav: Home

4 cells turn seabed microbiology upside down

March 27, 2013

Single-celled archaea are invisible to the naked eye, and even when using a microscope, great care must be taken to observe them. An international team of researchers led by the Center for Geomicrobiology, Aarhus University, Denmark, has nevertheless succeeded in retrieving four archaeal cells from seabed mud and mapping the genome of each one.

"Until now, nobody knew how these widespread mud-dwelling archaea actually live. Mapping the genome from the four archaeal cells shows they all have genes that enable them to live on protein degradation," says Professor Karen Lloyd, now at the University of Tennessee, and leading author of the ground-breaking results published in the renowned journal Nature.

Scientists previously thought that proteins were only broken down in the sea by bacteria, but archaea have now turned out to be important new key organisms in protein degradation in the seabed. Proteins actually make up a large part of the organic matter in the seabed and - since the seabed has the world's largest deposit of organic carbon - archaea thus appear to play an important and previously unknown role in the global carbon cycle.

Like a grain of sand on the beach

Archaea are some of the most abundant organisms in the world, but very few people have ever heard of them. They were originally discovered in extreme environments such as hot springs and other special environments like cow stomachs and rice paddies, where they form methane. In recent years, however, researchers have realised that archaea make up a large part of the microorganisms in the seabed, and that the seabed is also the habitat of the majority of the world's microorganisms.

"A realistic estimate is that archaea are the group of organisms with the most individuals in the world. In fact, there are more archaea than there are grains of sand on the beaches of the whole world. If you bury your toes right down in the mud in the seabed, you'll be in touch with billions of archaea," says Professor Bo Barker Jørgensen, Director of the Center for Geomicrobiology.

New technology links function and identity

This is the first time that scientists have succeeded in classifying archaeal cells in a mud sample from the seabed and subsequently analysing the genome of the cells, thereby revealing what the organisms are and what they live on.

"At present, we can't culture these archaea or store them in the laboratory, so this rules out the physiological tests usually carried out by the microbiologists. We've therefore worked with cell extraction, cell sorting, and subsequent mapping of the individual cell's combined genetic information - that's to say its genome. This is a new approach that can reveal both a cell's identity and its lifestyle," says Professor of Microbiology Andreas Schramm, affiliated with the Center for Geomicrobiology.

The method opens up a new world of knowledge for microbiologists, who can now study an individual microorganism just as zoologists study an individual mouse. Microbiologists have been hoping for this for a long time. Until now, they have only been familiar with the life processes of less than 1% of the world's microorganisms - those they can culture in a laboratory. The new method provides opportunities for studying the remaining 99% directly from nature.

"Applying this novel technique to marine sediments means we don't have to wait a thousand years for archaea to grow in lab to analyze their genomes - we can just sequence them directly from the environment. In future, this method will no doubt reveal new, unknown functions of microorganisms from many different environments, concludes Postdoctoral Fellow Dorthe Groth Petersen.
-end-
For more information, please contact:

Professor Karen Lloyd, Department of Microbiology, University of Tennessee, Knoxville, TN 37996, +1 865 974 4224, klloyd@utk.edu

Professor Bo Barker Jørgensen, Director of the Center for Geomicrobiology, Department of Bioscience, Aarhus University, +45 8715 6563/+45 2010 2123, bo.barker@biology.au.dk

Professor Andreas Schramm, Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, +45 8715 6541/+45 6020 2659, andreas.schramm@biology.au.dk

Postdoctoral Fellow Dorthe Groth Petersen, Center for Geomicrobiology, Department of Bioscience, Aarhus University, +45 8715 6506/+45 2211 3627, dorthe.petersen@biology.au.dk

Aarhus University

Related Genome Articles:

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
A new genome for regeneration research
The first complete genome assembly of planarian flatworm reveals a treasure trove on the function and evolution of genes.
Decoding the Axolotl genome
The sequencing of the largest genome to date lays the foundation for novel insights into tissue regeneration.
The Down's syndrome 'super genome'
Only 20 percent of foetuses with trisomy 21 reach full term.
More Genome News and Genome Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.