Nav: Home

Clarifying how lithium ions ferry around in rechargeable batteries

March 27, 2017

Although most of our electronic devices, like mobile phones, laptops and electric vehicles use lithium rechargeable batteries, what is going on inside them is not fully understood. Researchers from the Center for Molecular Spectroscopy and Dynamics, within the Institute for Basic Science (IBS) succeeded in observing in realtime the ultrafast dynamics of lithium ions with femtosecond time resolution (1/1,000,000,000,000,000 of a second). These findings help to explain what happens during the process of charging and discharging: a cornerstone for the advanced batteries with better performance. Published on Nature Communications, this study reveals the interactions between lithium ions and electrolytes, which are organic molecules that surround the lithium ions and conduct electricity, and were able to conclude that the existing theory on ion diffusion in lithium rechargeable batteries is not completely correct.

In a typical commercial lithium rechargeable battery, lithium ions dissolved in electrolytes move from the positive to the negative pole of the battery when the battery is charging. And, they migrate in the opposite way, when the battery is in use. The lithium ion mobility determines the performance of the lithium rechargeable battery, and determines how rapidly they can charge and discharge.

Lithium ions, however, do not migrate alone, they are surrounded by electrolytes that facilitate the journey from one pole to the other. Currently, the electrolytes in our lithium rechargeable batteries are typically composed of a mixture of: ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) in equal concentration. It is believed that lithium ions associate mainly with EC, forming the so-called "solvation shell" or "solvation sheath", while DMC and DEC are just enhancing the movement of these shells between the batteries' poles, like "lubricants". However, while most of the previous studies focused on the static properties of the bond between electrolytes and lithium ions, this study clarifies the dynamics of the bonding. Like in a motion picture, where a series of still images displayed rapidly one after the other create the effect of movements, IBS scientists took quick shots to analyze the formation and breaking of these bonds. However, while movies are typically filmed and displayed at 24 still images per seconds, these measurement "shots" were taken at time intervals of just femtoseconds.

Thanks to a tool called two-dimensional infrared spectroscopy, the team measured how lithium ions bind to the oxygen atoms of the DEC and found that these bonds break and form in a matter of 2-17 picoseconds (1/1,000,000,000,000 of a second). The timescale is similar for DMC. This means that DMC and DEC are more than just "lubricants", they are also part of the solvation shell together with EC and may play an active role in transporting lithium ions to the battery's pole.

"It was believed that EC makes a rigid shell around lithium ions during the migration between electrodes. However, this study shows that the solvent shell is not that rigid, it is constantly restructured during the ion transport," explains Professor CHO Minhaeng. And concludes: "For this reason, revising the existing lithium ion diffusion theory is inevitable."

The research team is working on a follow-up study to establish a new theory of the lithium ion diffusion process and it is building a new ultra-high-speed laser spectroscopy instrument that can observe the chemical reaction as well as film it on top of the rechargeable batteries' electrodes.

Institute for Basic Science

Related Batteries Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Batteries from scrap metal
Chinese scientists have made good use of waste while finding an innovative solution to a technical problem by transforming rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries.
Better cathode materials for lithium-sulphur-batteries
A team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterized by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries.
Bright future for self-charging batteries
Who hasn't lived through the frustrating experience of being without a phone after forgetting to recharge it?
Making batteries from waste glass bottles
Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries.
Batteries -- quick coatings
Scientists at Oak Ridge National Laboratory are using the precision of an electron beam to instantly adhere cathode coatings for lithium-ion batteries -- a leap in efficiency that saves energy, reduces production and capital costs, and eliminates the use of toxic solvents.
Lighter, more efficient, safer lithium-ion batteries
Researchers from Universidad Carlos III de Madrid and the Council for Scientific Research (initialed CSIC in Spanish) have patented a method for making new ceramic electrodes for lithium-ion batteries that are more efficient, cheaper, more resistant and safer than conventional batteries.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
A new approach to improving lithium-sulfur batteries
Researchers from the University of Delaware and China's Northwestern Polytechnical University, Shenzhen University and Hong Kong Polytechnic University have demonstrated a new polysulfide entrapping strategy that greatly improves the cycle stability of Li-S batteries.
Looking for the next leap in rechargeable batteries
USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries -- small enough for cellphones and powerful enough for cars.

Related Batteries Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...