Nav: Home

Hydrogen production: This is how green algae assemble their enzymes

March 27, 2017

Researchers at Ruhr-Universität Bochum have analysed how green algae manufacture complex components of a hydrogen-producing enzyme. The enzyme, known as the hydrogenase, may be relevant for the biotechnological production of hydrogen.

To date, little is known about the way organisms form this type of hydrogenases under natural conditions. Using novel synthetic biology methods, the team around Dr Anne Sawyer, PhD student Yu Bai, assistant professor Dr Anja Hemschemeier and Prof Dr Thomas Happe from the Bochum-based research group Photobiotechnology, discovered that a specific protein machinery in the green algal chloroplasts is required for the production of a functional hydrogenase. The researchers published their findings in "The Plant Journal".

Complex structure

The team worked with the single-cell alga Chlamydomonas reinhardtii. These organisms have a specific protein machinery in different regions of the cells that assembles enzymes - e.g. in the photosynthesis-conducting chloroplasts and in the cell fluid, i.e. the cytoplasm.

One enzyme that requires such assembly is the HYDA1 enzyme, which contains a complex cofactor, which is the area inside the enzyme where the actual hydrogen production takes place. The cofactor consists of a cluster of four iron and four sulphur atoms; a configuration frequently found in enzymes. What is unusual, however, is that a second cluster of two additional iron atoms binds to it for the hydrogen catalysis.

Special protein machinery necessary

Happe, Sawyer and their colleagues intended to identify the elements necessary for producing the cofactor in the living cell. They introduced hydrogenase precursors in different regions of the green algal cell, namely in the chloroplast and the cytoplasm. The protein machinery in the chloroplast was the only one capable of assembling a functioning hydrogenase. The machinery in the cytoplasm couldn't produce the complex cofactor.

Bacterial enzyme in green algae

In a subsequent test, the researchers implanted the blueprint of a bacterial hydrogenase in the green algal genome. Chlamydomonas reinhardtii used it to produce a functional enzyme that efficiently generated hydrogen.

"Based on these findings, we can develop biotechnological methods, in order to achieve efficient hydrogen production in green algae," says Happe. "We now know that the machinery that assembles enzymes in the chloroplasts is unique and irreplaceable."

Ruhr-University Bochum

Related Hydrogen Articles:

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
More Hydrogen News and Hydrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...