Humans risked limb ischemia in exchange for bipedal walking

March 27, 2018

Peripheral obstructive arterial disease develops when blood vessels narrow due to arteriosclerosis and blood flow in the legs (or rarely the arms) becomes clogged. Intermittent claudication is when blood flow disturbances in a limb causes pain, numbness, or coldness during physical activity. In severe cases, where the tissue has gone without blood for too long and dies, the limb may have to be amputated.

Previous clinical and animal research showed that mice receive less tissue damage under ischemic condition than humans, but the cause of the difference was not clear. To illustrate why humans seem to have such a disadvantage, researchers from Kumamoto University, Japan focused on collateral vessels that could bypass an obstruction. Using a murine hind limb ischemia model, they compared the shape of mouse hind limb blood vessels with those of a patient who had peripheral obstructive artery disease.

There are techniques, such as radiography, that can be used to visualize the small blood vessels of a mouse but they can only produce two-dimensional images. To obtain more detail, the researchers elected to use a system built by a collaboration of engineering and medical science researchers that established a method for stereoscopic visualization of small structures, the micro X-ray CT. This allowed for the detailed visualization of mouse blood vessels through soft tissue and around bone.

The micro CT scans clarified that when the hind limb of a mouse suffers from ischemia, the inferior gluteal artery expands and functions as a bypass. Even in human patients with peripheral obstructive artery disease, detailed diagnostic images revealed that the inferior gluteal artery expands in response to vascular stenosis (vessel hardening).

Importantly, the researchers also showed that the inferior gluteal artery of the mouse extends to the lower hind leg area, whereas the human inferior gluteal artery terminates much earlier at the buttock. Consequently, the mouse vascular structure is more robust against lower limb ischemia than the human vascular structure.

"Two things are believed to be the causes of the inhibited development of the inferior gluteal artery in humans," said Assistant Professor Yuichiro Arima, who led the study. "One is that the development of the artery is restricted by the skeletal change accompanying bipedal walking, and the other is that, over time, the distance between the pelvis and the lower leg has become too far for the artery to reach. In other words, evolution has increased the human risk for lower limb ischemia. This understanding is expected to lead to the development of treatments that strengthen the collateral circulation pathways for people suffering from peripheral obstructive arterial disease."

This research result was posted online in the Journal of American Heart Association on 23 March 2018.
-end-
[Source]

Arima, Y., Hokimoto, S., Tabata, N., Nakagawa, O., Oshima, A., Matsumoto, Y., ... Tsujita, K. (2018). Evaluation of Collateral Source Characteristics With 3?Dimensional Analysis Using Micro-X?Ray Computed Tomography. Journal of the American Heart Association, 7(6), e007800. doi:10.1161/jaha.117.007800

Kumamoto University

Related Blood Flow Articles from Brightsurf:

Brain regions with impaired blood flow have higher tau levels
In Alzheimer's disease, impaired blood flow to brain regions coincides with tau protein buildup.

3D ultrasound enables accurate, noninvasive measurements of blood flow
A 3D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a new study.

Blood flow recovers faster than brain in micro strokes
Work by a Rice neurobiologist shows that increased blood flow to the brain is not an accurate indicator of neuronal recovery after a microscopic stroke.

Exercise improves memory, boosts blood flow to brain
Scientists have collected plenty of evidence linking exercise to brain health, with some research suggesting fitness may even improve memory.

3D VR blood flow to improve cardiovascular care
Biomedical engineers are developing a massive fluid dynamics simulator that can model blood flow through the full human arterial system at subcellular resolution.

MRI shows blood flow differs in men and women
Healthy men and women have different blood flow characteristics in their hearts, according to a new study.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Blood flow monitor could save lives
A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.

Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.

Blood flow command center discovered in the brain
An international team of researchers has discovered a group of cells in the brain that may function as a 'master-controller' for the cardiovascular system, orchestrating the control of blood flow to different parts of the body.

Read More: Blood Flow News and Blood Flow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.