Nav: Home

New 'nanotweezers' open door to innovations in medicine, mobile tech

March 27, 2018

It's difficult to conceptualize a world where humans could casually manipulate nanoscale objects at will or even control their own biological matter at a cellular level with light. But that is precisely what Yuebing Zheng, assistant professor of mechanical engineering at The University of Texas at Austin, is working toward with his "nanotweezers" -- a new tool for handling nanoparticles using light that could create opportunities for innovations in nanotechnology and individual health monitoring.

Building upon several years of research, Zheng and his team from the Cockrell School of Engineering have developed opto-thermoelectric nanotweezers (OTENT) that will help lead to a greater understanding of matter and biological systems and open a range of possibilities for fundamental and technical innovation in nanophotonics -- the study of light-matter interaction on the nanometer scale. They explain their new work in the latest issue of the journal Nature Photonics.

"Until now, we simply did not know how to manipulate nanoparticles using optical heating," Zheng said. "With our nanotweezers, we can not only control particles at the nanoscale, we can also analyze the particles and control the coupling in-situ."

For one of the demonstrated applications of nanotweezers, Zheng worked with UT Austin chemical engineering professor Brian Korgel, who this year was elected to the National Academy of Engineering for his breakthrough work in nanocrystals and nanowires.

"This project was really interesting for me," Korgel said. "It was led by a group in mechanical engineering who had discovered a way to manipulate individual nanoparticles and nanowires. Their expertise was in building the photonics machines but not in making the materials to use for the experiments. So, my group developed the synthesis of the nanowires used in the study. It was a great collaboration."

Ernst-Ludwig Florin, associate professor of physics and a member of UT's Center for Nonlinear Dynamics, along with graduate student Emanuel Lissek, provided additional expertise in precision measurements by demonstrating the strength of the nanotweezers.

This cooperation between nanophotonics, nanochemistry and nanophysics research has provided the tools to manipulate and analyze nanoparticles in ways that have, until now, been beyond our reach. The UT research team has demonstrated how, using their nanotweezers, light can be used at the nanoscale in the same way mechanical tweezers are used to handle larger samples.

As a general technique, the nanotweezers are applicable to a wide range of metal, semiconductor, polymer and dielectric nanostructures with charged or hydrophobic surfaces. Thus far, researchers have successfully "trapped" silicon nanospheres, silica beads, polystyrene beads, silicon nanowires, germanium nanowires and metal nanostructures. The further arrangement of these nanomaterials in a rationally designed manner can lead to a better understanding of how matter organizes and potential discovery of new functional materials.

In a biological setting, Zheng believes that live cell manipulation and cell-to-cell communication will probably be a primary research focus for engineers wishing to exploit the capabilities afforded by the nanotweezers.

"Optimization of the current system to make it bio-compatible is the next step of our project," Zheng said. "We expect to use our tweezers to manipulate biological cells and molecules at single-molecule resolution, to control drug release and to study the cell-cell interaction. The manipulation and analysis of biological objects will open a new door to early disease diagnosis and the discovery of nanomedicine."

Zheng is confident the technology will be commercialized, even to the point where nanotweezers could be adapted for use in a smartphone app, almost like a modern-day Swiss army knife.

"That's what we hope," he said. "We also see great opportunities in outreach education, perhaps for students who want to see what a cell really looks like. In addition, it could be used to assess how healthy one's immune system is functioning. It has the potential to be an important mobile diagnostic tool, giving people more autonomy over their own health care."
-end-
This work is supported by the Beckman Young Investigator Program, the Army Research Office, the NASA Early Career Faculty Award, the National Institute of General Medical Sciences of the National Institutes of Health, the Robert A. Welch Foundation and the National Science Foundation.

University of Texas at Austin

Related Nanowires Articles:

Resistance is utile: Magnetite nanowires with sharp insulating transition
A Japanese research team led by Osaka University produced Fe3O4 nanowires on 10-nm length scales by deposition on an MgO substrate.
Giving nanowires a DNA-like twist
Argonne National Laboratory played a critical role in the discovery of a DNA-like twisted crystal structure created with a germanium sulfide nanowire, also known as a 'van der Waals material.' Researchers can tailor these nanowires in many different ways -- twist periods from two to twenty micrometers, lengths up to hundreds of micrometers, and radial dimensions from several hundred nanometers to about ten micrometers.
Shell increases versatility of nanowires
Nanowires promise to make LEDs more colorful and solar cells more efficient, in addition to speeding up computers.
Scientists synthesize new nanowires to improve high-speed communication
Scientists from the Institute of Process Engineering, City University of Hong Kong and their collaborators synthesized highly crystalline ternary In0.28Ga0.72Sb nanowires to demonstrate high carrier mobility and fast IR response.
Dose of vitamin C helps gold nanowires grow
Rice University scientists discover a method to turn stubby gold nanorods into gold nanowires of impressive length.
Silver nanowires promise more comfortable smart textiles
In a paper to be published in the forthcoming issue in NANO, researchers from the Nanjing University of Posts and Telecommunications have developed a simple, scalable and low-cost capillary-driven self-assembly method to prepare flexible and stretchable conductive fibers that have applications in wearable electronics and smart fabrics.
Artificial synapses made from nanowires
Scientists from J├╝lich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell.
Nanowires could make lithium ion batteries safer
From cell phones and laptops to electric vehicles, lithium-ion batteries are the power source that fuels everyday life.
Scientists have a new way to gauge the growth of nanowires
In a new study, researchers from the US Department of Energy's Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than a human hair.
Cleaning nanowires to get out more light
A simple chemical surface treatment improves the performance of nanowire ultraviolet light-emitting diodes.
More Nanowires News and Nanowires Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.