Nav: Home

Are no-fun fungi keeping fertilizer from plants?

March 27, 2019

Crops just can't do without phosphorus.

Globally, more than 45 million tons of phosphorus fertilizer are expected to be used in 2019. But only a fraction of the added phosphorus will end up being available to crops.

In south Florida, for example, "it is thought that less than twenty percent of phosphorus applied as fertilizer is taken up by plants before it becomes unavailable," says Mary Tiedeman, a researcher at Florida International University.

The impact is two-fold: financial and environmental. "Fertilizer costs are significant for farmers in south Florida," says Tiedeman. "And phosphorus rock, the most widely used source of phosphorus fertilizer, is in low supply across the globe. It is thought that phosphorus rock resources will only be available for the next 50 to 200 years."

Tiedeman is exploring whether a rarely-studied process involving soil fungi could contribute to low phosphorus availability to plants in south Florida. This research could also help unravel how land use influences fungal communities in soil. It may also help us better understand vital soil-phosphorus dynamics.

"In general, fungi play a tremendous role in cycling phosphorus within soils," Tiedeman says. "They can release phosphorus from mineral (rock) and organic (decaying matter) sources. From there, plants take up the released phosphorus."

But under specific environmental conditions, like those found in south Florida soils, fungi may be contributing to the problem of phosphorus unavailability. Some fungi are capable of making minerals out of elements dissolved in soil water. This process is called "bioprecipitation". Tiedeman wonders if fungi can take dissolved (plant-available) phosphorus and convert it to less available mineral forms.

The soils of south Florida add another layer to the puzzle. "Agricultural soils in south Florida are quite unique," says Tiedeman. "They were created by pulverizing limestone bedrock to create rocky calcareous soil."

Limestone is made of calcium carbonate. When phosphorus is in the presence of carbonates in solution, it forms a microscopic layer on the surface of the limestone. Even without fungi, phosphorus availability is quickly suppressed in south Florida's soils.

"Over time, this coating can become a 'seed' for more stable, less available forms of phosphorus." says Tiedeman.

Without freed-up phosphorus, crops can't grow successfully. So many farmers in south Florida have kept adding phosphorus to soils. In a continuing cycle, most of this phosphorus becomes unavailable to plants. Over time, large amounts of unavailable phosphorus have collected in these soils. "Some agricultural soils in the area have 100-200 times more phosphorus than what was naturally present. Along with high concentrations of P, the types of P compounds present in these soils are perplexing. Recent studies have documented the presence of apatite - a phosphorus crystal that generally requires intense heat and pressure in order to form. One hypothesis, which is driving Tiedeman's research, is that microorganisms in the soil are creating stable phosphorus minerals.

To investigate whether fungi are able to create phosphorus minerals, Tiedeman is bringing the fungi into the lab. This allows her to explore several questions: How do local soil fungi respond to doses of available phosphorus while living in limestone soils? Do fungi contribute to the crystallization of phosphorus?

"We plan to analyze fungal samples and any biproducts of their growth using a scanning electron microscope," says Tiedeman. "That would allow us to actually look for crystal forms of phosphorus. It may also help us better understand how fungi get crystals to form." The study's findings aren't limited to south Florida, though. An estimated 10 percent of all arable soils are high in carbonates that behave like limestone's calcium carbonate. "Investigating south Florida's limestone soils may have implications beyond a regional scale," says Tiedeman.

"Identifying all processes involved in phosphorus unavailability in calcareous soils will be useful in developing strategies to improve fertilizer use efficiency. This could be of great benefit to producers and the environment."
-end-
Tiedeman presented her research at the International Meeting of the Soil Science Society of America, Jan. 6-9, San Diego.

American Society of Agronomy

Related Phosphorus Articles:

Reduce, reuse, recycle: The future of phosphorus
Societies celebrate the discovery of this important element in 1669.
Lack of reporting on phosphorus supply chain dangerous for global food security
A new study from Stockholm University and University of Iceland shows that while Phosphorus is a key element to global food security, its supply chain is a black box.
Hydrogenation of white phosphorus leads way to safer chemical technology
White phosphorus is well-known for being a highly toxic compound with suffocating scent.
Rice cultivation: Balance of phosphorus and nitrogen determines growth and yield
Cluster of Excellence on Plant Sciences CEPLAS at the University of Cologne cooperates with partners from Beijing to develop new basic knowledge on nutrient signalling pathways in rice plants.
Ammonia by phosphorus catalysis
More than 100 years after the introduction of the Haber-Bosch process, scientists continue to search for alternative ammonia production routes that are less energy demanding.
More Phosphorus News and Phosphorus Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...