Spinning-prism microscope helps gather stem cells for regenerative medicine

March 27, 2019

Tsukuba-Pluripotent stem cells (PSCs) can transform into any type of cell in the human body. This unique property gives them enormous potential for regenerative medicine, as stem cells might eventually be used to replace tissues that are lost as a result of degenerative disorders or from injuries. Not all stem cells are created equal, though, and some are better than others at differentiating into the desired tissues. In a study published in Scientific Reports, a research group centered at the University of Tsukuba describes an improved kind of microscope that can identify PSCs most likely to undergo transformation--and therefore offer the greatest potential medical benefit.

"When stem cells are used for medical purposes, it's incredibly important that the right type of PSCs are selected at the outset," corresponding author Koji Hisatake explains. "Cells that have low pluripotency are not especially effective after being transplanted in a patient. Even worse, in some cases there's a risk that they can form tumors. Our goal was to improve on earlier microscopy techniques so that we can do a better job at isolating stem cells with high pluripotency, which are more likely to be safe and effective for therapeutic use."

Traditionally, a rigorous process is needed to weed out potentially problematic cells from the medically beneficial ones. This often involves staining cells or labeling them with special fluorescent markers--invasive processes that can damage or destroy the stem cells.

The researchers at Tsukuba took a different tack altogether. They developed a modified form of differential interference contrast (DIC) microscopy, a non-invasive approach that is commonly used to look at cells. Their new technique, coined Phase Distribution (PD) imaging by the research group, takes DIC one step further by offering higher resolution at the cellular level.

"The basic principle behind DIC is that cell structures can be visualized because they each scatter light a little bit differently," lead investigator Ken Nishimura explains. "These differences are captured using crystal prisms that polarize light waves as they travel through the microscope. Our PD microscope works similarly, but is unique in that the prisms are actually movable. This lets us capture two separate images of the cell, at right angles from one another, and then merge the images together using a computer. The final picture has a much greater level of detail than what we're able to get with a traditional DIC microscope. With PD, we can not only visualize but also quantifiably measure important structures inside the cell, most notably mitochondria."

You may be wondering: why is it important to measure a stem cell's mitochondria?

Earlier studies found that the transformative ability of PSCs is tied to how many--or really, how few--mitochondria they have. Mitochondria are the tiny, oxygen-devouring energy powerhouses of the cell, and while most cells are jam-packed with them, highly potent stem cells in fact have fewer and smaller mitochondria. The research team took advantage of this key difference, and with the help of their improved imaging system, they were able to quantify the level of mitochondria in each cell and use it as a reliable way to isolate PSCs with the greatest medical potential.

"PD imaging allows us to non-invasively identify stem cells that have been fully reprogrammed and likely have exceptional pluripotency," Nishimura adds. "The system is less costly and time-consuming than other screening methods, so we're hopeful that this will eventually become an important tool in the screening arsenal, especially during the critical early stages of stem cell selection."
-end-


University of Tsukuba

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.