Harvesting water energy using slippery surfaces

March 27, 2019

The continuous prosperity and economic growth in humankind demands new strategies to combat the grand energy challenge. Water is pervasive in our world and the scavenging of abundant, clean and renewable water-related energy is essential.

Among many approaches to harvest water energy, triboelectric nanogenerators (TENGs) that are capable of converting mechanical energy to electrical energy have received increasing attention over the past several years. However, one of the main bottlenecks for the practical implications of such triboelectric devices for water energy originates from the fast degradation of the physiochemical properties of interfacial materials at liquid/solid interfaces under harsh environments, such as low temperature, high humidity or under water condition. For example, the conventional superhydrophobic (SHS) based TENG, referred to as SHS-TENG, is limited by poor durability, undesired biofilm coverage and thereby limited energy efficiency in the long operation under harsh environments.

In a new research article published in the Beijing-based National Science Review, scientists at City University of Hong Kong, University of Science and Technology of China, East China Normal University and University of Nebraska-Lincoln present a new paradigm of TENGs that address many inherent drawbacks encountered by SHS-TENG. Different from previous works, the TENG is covered by a novel slippery lubricant-impregnated porous surface (SLIPS), referred as SLIPS-TENG. Remarkably, the marriage of a slippery and configurable liquid layer exhibits many advantages over conventional design including optical transparency, configurability, self-cleaning, flexibility, and power generation stability, in a wide range of working environments. Moreover, the SLIPS-TENG can be extended to various wearable and flexible devices to impart more versatile functionalities.

"Scientifically, we combine two seemingly different areas, i.e. SLIPS and TENG, together, and report the triboelectricity generation occurred at liquid/liquid interface." Prof. Zuankai Wang said, "In a broader perspective, the marriage of SLIPS with TENG provides a paradigm shift in the design of robust blue energy devices that can be used as a clean and longer lifetime alternative in various working conditions."
-end-
This research received funding from Research Grants Council of Hong Kong, Shenzhen Science and Technology Innovation Council and City University of Hong Kong.

See the article:

SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using slippery interface
Natl Sci Rev 2019; doi: 10.1093/nsr/nwz025
https://doi.org/10.1093/nsr/nwz025

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Science China Press

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.