Nav: Home

Let's not make big waves

March 27, 2019

Due to its potential to make computers faster and smartphones more efficient, spintronics is considered a promising concept for the future of electronics. In a collaboration including the Max Planck Institute for Intelligent Systems (MPI-IS) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a team of researchers has now successfully generated so-called spin waves much more easily and efficiently than was previously deemed possible. The researchers are presenting their results in the journal Physical Review Letters (DOI: 10.1103/PhysRevLett.122.117202).

Modern computer chips are based on transporting electric charges: Each processing event causes an electron current to flow in an electronic component. These electrons encounter resistance, which generates undesired heat. The smaller the structures on a chip, the more difficult it is to dissipate the heat. This charge-based architecture is also partially the reason why the processors' clock rates have not seen any significant increases in years. The nice, steady development curve of chip performance and speed is now flattening. "Existing concepts are reaching their limits," explains Dr. Sebastian Wintz from the Institute of Ion Beam Physics and Materials Research at HZDR. "This is why we are working on a new strategy, the spin waves."

This approach no longer involves transporting charges, but only transfers the electrons' intrinsic angular momentum (,spin') in a magnetic material. The electrons themselves remain stationary, while only their spins change. Since the spins of neighboring electrons sense each other, a change in one spin can travel to its neighbors. The result is a magnetic signal running through the material like a wave - a spin wave. The advantage of spin-powered components is that they would generate very little heat, which means they might use significantly less energy - and this is of great interest for mobile devices such as smartphones. It may also be possible to further miniaturize components for certain applications because spin waves have far shorter wavelengths than comparable electromagnetic signals, for instance in mobile communication. This means we could fit more circuits onto a chip than we can today.

Stirring a spin wave with a magnet vortex

Before we can do all this, we first need a lot more fundamental research. For instance, we need to know how to efficiently generate spin waves. Experts have been trying to work this out for a while now, attaching micrometer-sized metal strips onto thin magnetic layers. An alternating current running through this strip creates a magnetic field that is limited to a very small space. This field will then excite a spin wave in the magnetic layer. But this method has one disadvantage: It is difficult to make the wavelength of the generated spin waves smaller than the width of the metal strip - which is unfavorable for the development of highly integrated components with nanometer-sized structures.

Yet there is an alternative: A magnetic material shaped into circular disks evokes the formation of magnetic vortices whose cores measure no more than about ten nanometers. A magnetic field can then make this vortex core oscillate, which triggers a spin wave in the layer. "Some time ago, we needed relatively complex multi-layered materials to make this happen," Wintz reports. "Now we have managed to send out spin waves from vortex cores in a very simple material." They use an easy-to-manufacture nickel iron alloy layer of about 100 nanometers in thickness.

Unexpectedly short wavelengths

What's remarkable is the wavelength of the generated spin waves - a mere 80 nanometers. "The expert community was surprised we did this in such a simple material," says Dr. Georg Dieterle, who explored the phenomenon in his PhD thesis at MPI-IS. "We also didn't expect to be able to generate such short waves at frequencies in the lower gigahertz range." Experts think that the reason for the short wavelengths resides in the way they travel. Close to the cross-sectional center of the nickel iron layer, the spin wave forms a sort of "knot", inside of which the magnetic direction oscillates only up and down rather than along its usually circular trajectory.

To make these phenomena visible, the team used a special x-ray microscope at the electron storage ring BESSY II at the Helmholtz Zentrum Berlin. "This is the only place on earth that offers the necessary space and time resolutions in this combination," emphasizes Prof. Gisela Schütz, director at MPI-IS. "Without this microscope, we would not have been able to observe these effects." Now the experts are hoping that their results will help further the development of spintronics. "Our vortex cores could, for instance, serve as a local, well controllable source to explore the underlying phenomena and develop new concepts with spin-wave-based components," Dieterle projects. "The spin waves we observed could be of future relevance to highly integrated circuits."

G. Dieterle, J. Förster, H. Stoll, A.S. Semisalova, S. Finizio, A. Gangwar, M. Weigand, M. Noske, M. Fähnle, I. Bykova, J. Gräfe, D.A. Bozhko, H.Yu. Musiienko-Shmarova, V. Tiberkevich, A.N. Slavin, C.H. Back, J. Raabe, G. Schütz, S. Wintz: Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths, in Physical Review Letters, 2019 (DOI: 10.1103/PhysRevLett.122.117202)

More information:

Dr. Sebastian Wintz
Institute of Ion Beam Physics and Materials Research at the HZDR / Paul Scherrer Institut, Switzerland
Phone: +49 351 260-3221 | Mail:

Prof. Gisela Schütz
Director, Max Planck Institute for Intelligent Systems
Phone: +49 711 689-1950 | Mail:

Media contact:

Simon Schmitt | Science editor
Phone: +49 351 260-3400 | Mobile: +49 175 874 2865 | Mail:
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden / Germany |

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs - as an independent German research center - research in the fields of energy, health, and matter. We focus on answering the following questions:

* How can energy and resources be utilized in an efficient, safe, and sustainable way?

* How can malignant tumors be more precisely visualized, characterized, and more effectively treated?

* How do matter and materials behave under the influence of strong fields and in smallest dimensions?

To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the High-Magnetic Field Laboratory Dresden, and the ELBE Center for High-Power Radiation Sources. HZDR is a member of the Helmholtz Association and has five sites (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld near Hamburg) with almost 1,200 members of staff, of whom about 500 are scientists, including 150 Ph.D. candidates.

Helmholtz-Zentrum Dresden-Rossendorf

Related Magnetic Field Articles:

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
New world record magnetic field
Scientists at the University of Tokyo have recorded the largest magnetic field ever generated indoors -- a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at