Nav: Home

Autonomous weed control via smart robots

March 27, 2019

WASHINGTON, D.C., March 27, 2019 -- Driving across Iowa, Hendrik J. Viljoen, distinguished professor of chemical and biological engineering at the University of Nebraska, noticed that soybean fields were becoming increasingly infested with weeds each season. The culprit is a glyphosate-resistant weed called "palmer amaranth," which is threatening crops in the Midwest.

One pesticide currently used for controlling palmer amaranth is "Dicamba," but it has devastating effects on adjacent areas, harming trees and other crops, because it tends to drift when sprayed during windy conditions.

As a firm believer in the concept that our well-being is closely tied to the health of the crops and animals within our food chain, Viljoen reports in the journal Physics of Fluids, from AIP Publishing, that he was inspired to create a way to spot treat weeds that eliminates any risk of pesticide drift.

"A pesticide solution can be stabilized on a rotating horizontal cylinder/roller akin to a wooden honey dipper," said Viljoen. "Its stability depends on the speed at which the applicator rotates. But the roller is only one part of a bigger process, and there are some technical details regarding the roller that we're also addressing, namely replenishing the pesticide load via wicking from a reservoir at the center of the cylinder."

The manner in which pesticides are applied to plants makes a difference. They can be sprayed from the top of the leaf, rolled on, or delivered by a serrated roller to simultaneously scuff it and apply the pesticide. "We will only arrive at an optimum design if we understand how the active ingredient in the pesticide is delivered to the weed, how it enters the phloem (the plant's vascular system that transports the active ingredient), and the efficacy of its killing mechanism," Viljoen explained.

To apply the pesticide to weeds, rollers can be mounted onto small robots or tractors. "Our current research objective is to develop a system where unmanned aerial vehicles image fields and feed the images to trained neural networks to identify the weeds," he said. "The information on weed species and their exact location will then be used by the robots to spot treat the weeds."

One key finding by Viljoen's group is that the preferred way to operate the roller is to rotate it so that the original velocity at the roller's underside coincides with the direction the robot is traveling. They're now doing experiments to determine any uptake bias for palmer amaranth, as well as exploring making part of the roller's surface serrated. "The idea is to physically penetrate the epidermis to enhance the amount of active ingredient that's delivered to the weed," he said. "To broaden our understanding, we've developed a mathematical model of the transport of the pesticide in the phloem."

The significance of this work is that while there's increasing pressure to produce enough food for a growing population, the current approach is unsustainable. The trend today is to use increased amounts and more potent chemicals to control weeds and invasive species that have developed resistance to previously effective pesticides.

"We must minimize the impact of our practices on the environment and reduce the use of chemicals, their residues and metabolites within our food chain and on the greater ecology," Viljoen said. "Technologies exist that can help us achieve these goals. Precision spray technologies use artificial intelligence to identify weeds and only spray specific areas, but we can do better. We should eliminate the risk of drift and minimize exposure of crops and soil to pesticides."

Developing a drift-free, weed-specific applicator will pave the way for autonomous weed control with smart robots. "At this stage, we can't envision the full utility of these robots, but they offer us the opportunity to survey fields and alert us to disease breakouts, blights or nematodes," said Viljoen. "In the future, the roller -- with some modifications -- could also be used to deliver small RNA molecules to plants. Smaller farm operations that focus on specialized products will likely be the first adopters of the technology."
-end-
The article, "Stability analysis of a thin film on a rotating cylinder with low airflow," is authored by Heather Newell and Hendrik J. Viljoen. It appeared in Physics of Fluids on March 12, 2019 (DOI: 10.1063/1.5080443). The article can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5080443.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See http://pof.aip.org.

American Institute of Physics

Related Robots Articles:

Robots popular with older adults
A new study by psychologists from the University of Jena (Germany) does not confirm that robot skepticism among elder people is often suspected in science.
Showing robots how to do your chores
By observing humans, robots learn to perform complex tasks, such as setting a table.
Designing better nursing care with robots
Robots are becoming an increasingly important part of human care, according to researchers based in Japan.
Darn you, R2! When can we blame robots?
A recent study finds that people are likely to blame robots for workplace accidents, but only if they believe the robots are autonomous.
Robots need a new philosophy to get a grip
Robots need to know the reason why they are doing a job if they are to effectively and safely work alongside people in the near future.
How can robots land like birds?
Birds can perch on a wide variety of surfaces, thick or thin, rough or slick.
Soft robots for all
Each year, soft robots gain new abilities. They can jump, squirm, and grip.
The robots that dementia caregivers want: robots for joy, robots for sorrow
A team of scientists spent six months co-designing robots with informal caregivers for people with dementia, such as family members.
Faster robots demoralize co-workers
A Cornell University-led team has found that when robots are beating humans in contests for cash prizes, people consider themselves less competent and expend slightly less effort -- and they tend to dislike the robots.
Increasing skepticism against robots
In Europe, people are more reserved regarding robots than they were five years ago.
More Robots News and Robots Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.