Lipid vesicles transmit luminous or electrical signals

March 27, 2019

Liposomes are small spherical vesicles with walls comprising two layers of lipids and containing an aqueous core. These artificial structures have been developed for drug delivery or as carriers of active substances in cosmetic products. Another possible application involves the encapsulation of magnetic nanoparticles in liposomes to use them to transmit signals.

This possibility is discussed in an article published by a group of Brazilian researchers supported by São Paulo Research Foundation - FAPESP in Royal Society Open Science.

"Our research belongs to the sphere of basic science but has potential applications in such fields as computational signal transmission, for example. We built a model with two sets of liposomes. One type was nanometric, with a size of about 100 nanometers, and the other was a group of 'giants' measuring 10-20 micrometers," said Iseli Lourenço Nantes Cardoso.

Cardoso is a Full Professor at the Federal University of the ABC (UFABC) in Santo André, Brazil and was co-principal investigator for the study. The other principal investigator was Frank Nelson Crespilho, a professor at the University of São Paulo's São Carlos Chemistry Institute (IQSC-USP).

The nanometric and giant liposomes used in the model were designed to mimic drug carriers and cells, respectively, and to fuse with each other. Instead of delivering drugs, however, the nanometric liposomes transported magnetite nanoparticles with fluorophores (fluorescent molecules) or electrically charged lipids. The fluorophores and charged lipids were used to transmit signals, while the magnetic particles were used to control transmission by means of magnets.

"In the initial situation, the giant vesicles had no fluorophores, charges or magnetite nanoparticles. Upon fusing with the nanometric liposomes, which contained luminous or electrical information, the giant vesicles incorporated this information. They also incorporated the magnetic particles and hence could be drawn by a magnet to the signal-receiving station. This created the possibility of an on/off mechanism. When the magnet moves the vesicle toward the receiving station, we have the 'on' state. When it's in the opposite direction, we have the 'off' mode, and the signal is blocked," Cardoso explained.

"In the case of the light signal, the giant vesicles were conducted by a capillary tube to a fiber-optic connection and from there to a spectrofluorimeter, which recorded the fluorescence spectrum. For the electrical signal, we used a magneto-electrochemical signal transmission system. When the electrically charged molecules are conducted to an electrode by a magnet, a high signal occurs. If the magnet is removed, the signal is very low," he said.

According to the researchers, these devices can be used to perform Boolean logic operations in which the variables and functions have values only of 0 and 1. These would be combined in pairs to create four dyads: 0-0, 0-1, 1-0 and 1-1. The first dyad (0-0) would be the giant vesicle without fluorophores, charges or magnetite particles. With fluorophores but no magnetite, the device produces but does not transmit a light signal (0-1). With magnetite but no fluorophores, the giant vesicle can be transported but does not transmit a light signal (1-0). With both fluorophores and magnetite, it transmits a light signal (1-1).

The study was conducted as part of the Thematic Project "Interfaces in materials: electronic, magnetic, structural and transport properties", for which Professor Adalberto Fazzio is the principal investigator, and demonstrated for the first time that magnetic nanoparticles can be used at the liposome interface to transmit luminous or electrical signals.
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at and visit FAPESP news agency at to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Magnetic Nanoparticles Articles from Brightsurf:

Topology gets magnetic: The new wave of topological magnetic materials
The electronic structure of nonmagnetic crystals can be classified by complete theories of band topology, reminiscent of a 'topological periodic table.' However, such a classification for magnetic materials has so far been elusive, and hence very few magnetic topological materials have been discovered to date.

Spintronics: Researchers show how to make non-magnetic materials magnetic
A complex process can modify non-magnetic oxide materials in such a way to make them magnetic.

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties
The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers, reports in the most recent edition of ScienceAdvances.

Determining effective magnetic moment of multicore nanoparticles
Most commercial nanoparticles do not possess a single magnetic core but have small magnetic crystals called crystallites.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

Science snapshots from Berkeley Lab: 3D nanoparticles and magnetic spin
Researchers at Berkeley Lab have captured 3D images of nanoparticles in liquid with atomic precision, and developed an ultrathin electrical switch that could further miniaturize computing devices and personal electronics without loss of performance.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Scientists propose nanoparticles that can treat cancer with magnetic fluid hyperthermia
A group of Russian scientists have synthesized manganese-zinc ferrite nanoparticles that can potentially be used in cancer treatment.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Read More: Magnetic Nanoparticles News and Magnetic Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to