Nav: Home

Researchers beginning to uncover the mystery of hagfish's zombie hearts 

March 27, 2019

They are the scavengers of the deep and the dead.

Hagfish are slimy bottom-dwellers that live off the carcasses of dead sea creatures and thrive in deep waters where oxygen is hard to come by. In fact, their hearts can keep on beating for 36 hours without any oxygen, making hagfish a champion among anoxia-tolerant fish.

A human heart, by contrast, becomes permanently damaged after just a few minutes without oxygen.

Now, University of Guelph research has uncovered clues as to how hagfish keep their hearts pumping even when they've run out oxygen. By unravelling the mysteries of the hagfish heart, this work could provide new ideas on how to protect the human heart when oxygen delivery is impaired, such as during a heart attack.

"We want to understand how these fish hearts can work for so long without oxygen because this could lead to innovative strategies for preserving human cardiac tissue during myocardial infarction or heart transplant," said Prof. Todd Gillis, who led this study along with recent MSc graduate Lauren Gatrell.

Gillis is a professor in the Department of Integrative Biology, and a founding member of U of G's Centre for Cardiovascular Investigations.

Gatrell and Gillis sought to understand what fuels hagfish hearts when they've run out of oxygen.

"We wanted to know which metabolic fuels were being used and how they were using them, given that the hearts of most vertebrates run out of cellular energy when oxygen is removed. This is what leads to the tissue damage."

Published in the Journal of Comparative Physiology, the study tested two potential fuel sources: glucose and glycerol.

Previously, Gillis found that during the beginning of an anoxia exposure, hagfish hearts use glycogen for energy, a form of stored glucose in muscles. But these glycogen stores aren't enough to keep the heart pumping during continuous anoxia exposure, and it was unclear what fuel took over once glycogen was depleted.

Gatrell exposed isolated hagfish hearts to 12 hours of anoxia or normoxia during which time she supplied the hearts with saline containing either glucose, glycerol or no fuel source, while measuring heart contraction.

During these experiments, the hearts continued to pump, even without oxygen.

"If you treated a mammalian heart in a similar manner, it would quickly stop beating and become permanently damaged. You'd also have to keep stimulating it with a mild electrical shock just to keep it beating. But the hagfish heart continues to generate enough electrical potential to keep working," Gillis said."They're kind of like zombie hearts; they literally will just keep beating. It's pretty amazing to see."

The experiments revealed that providing the hearts with glycerol during anoxia clearly enhanced the hearts' contraction -- even more so than when the hearts were supplied with glucose, which is typically the fuel that muscles prefer.

"We're still trying to figure out what this means," said Gillis. "These results raise so many more exciting questions. Is there a benefit to using glycerol? Is it some ancestral anomaly or the result of evolution that they are stimulated by glycerol?"

Gillis suspects that glycerol is being delivered to the heart from the liver.

"We think it's circulating through the fish in their blood," he said. "We found very high levels of glycerol in the liver, which is where it would be produced and then transported to the tissues."

He said he's fascinated that hagfish hearts react so strongly to glycerol and admitted he found it a bit weird.

"But just about everything about hagfish is bizarre. This is just another weird thing that they can do. Now we need to know how and why they do it."
-end-


University of Guelph

Related Glucose Articles:

What drives inflammation in type 2 diabetes? Not glucose, says new research
Research led by Barbara Nikolajczyk, Ph.D., disproved the conventional wisdom that glucose was the primary driver of chronic inflammation in type 2 diabetes.
ALS patients may benefit from more glucose
A new study led by scientists at the UA has uncovered a potential new way to treat patients with ALS, a debilitating neurodegenerative disease.
Artificial muscles powered by glucose
Artificial muscles made from polymers can now be powered by energy from glucose and oxygen, just like biological muscles.
Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.
Protein released from fat after exercise improves glucose
Exercise training causes dramatic changes to fat. Additionally, this 'trained' fat releases beneficial factors into the bloodstream.
WSU researchers create 3D-printed glucose biosensors
A 3D-printed glucose biosensor for use in wearable monitors has been created by Washington State University researchers.
Gut protein mutations shield against spikes in glucose
Why is it that, despite consuming the same number of calories, sodium and sugar, some people face little risk of diabetes or obesity while others are at higher risk?
Glucose binding molecule could transform the treatment of diabetes
Scientists from the University of Bristol have designed a new synthetic glucose binding molecule platform that brings us one step closer to the development of the world's first glucose-responsive insulin which, say researchers, will transform the treatment of diabetes.
Nutrients may reduce blood glucose levels
One amino acid, alanine, may produce a short-term lowering of glucose levels by altering energy metabolism in the cell.
Cancer hijacks the microbiome to glut itself on glucose
A University of Colorado Cancer Center study published today in the journal Cancer Cell shows that leukemia actively undercuts the ability of normal cells to consume glucose, thus leaving more glucose available to feed its own growth.
More Glucose News and Glucose Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.