Nav: Home

Signs of 1906 earthquake revealed in mapping of offshore northern San Andreas Fault

March 27, 2019

A new high-resolution map of a poorly known section of the northern San Andreas Fault reveals signs of the 1906 San Francisco earthquake, and may hold some clues as to how the fault could rupture in the future, according to a new study published in the Bulletin of the Seismological Society of America.

Samuel Johnson of the U.S. Geological Survey and Jeffrey Beeson of Fugro USA Marine Inc. compiled the map for the 35-kilometer-long section of the fault between Tomales Point and Fort Ross, California. They discovered two large zones, each covering about two square miles, of slope failure on the seafloor offshore of the Russian River, marked by lobes that appear to have formed when the intense shaking of the 1906 earthquake caused sand liquefaction.

The mapping also demonstrates that there are two active strands of the fault within the northern part of Bodega Bay, each of which has moved tens of meters within the past 10,000 years.

The findings "are not going to affect what we know about the recurrence interval or slip rate" on the Northern San Andreas Fault, "but it will affect what we know about how the northern San Andreas fault ruptures," Johnson said.

"Normally if you were studying a fault zone on land and found a prominent fault strand, you would probably assume that was the strand that has most recently ruptured," he explained. "Because we found two here, it's a cautionary tale for earthquake geologists to comprehensively map fault zones. You may only capture part of the earthquake history or slip rate along a fault if you only know about one strand in a multi-strand zone"

The northern offshore areas of the fault have been intensively studied only within the past eight years, said Johnson. While much of the rest of the San Andreas fault has become a natural laboratory for studying earthquakes, "it's a major geoscience oversight that these northern areas have not been studied before," said Johnson. "We have been waiting for technology to produce the tools to look at these areas in high resolution."

The researchers used data drawn from several techniques, including high-resolution seismic reflection profiles and multibeam bathymetry, both of which use multiple directed sound waves to image layers on or below the seafloor. Collection of some of the bathymetry data was funded by the California Ocean Protection Council as part of its work to designate and develop monitoring strategies for Marine Protected Areas, and by the National Oceanic and Atmospheric Administration (NOAA) to improve nautical charts.

The liquefaction lobes, which are similar to the ground failure seen offshore of the Klamath River delta during the magnitude 7.2 Eureka earthquake in northern California in 1980, were one of the surprises uncovered during the mapping, said Johnson.

The researchers were lucky to have caught a glimpse of the lobes before they disappeared, as some of the features are already being smoothed over by sediments deposited after 1906, Johnson said. "If you came back in another 50 to 100 years, you might not see these features because they would be all covered up. You can see their lifespan in the data and images we have now."

Other insights from the map include a look at how movement along this portion of the fault has affected the onshore landscape, including the uplift of marine terraces and rapid formation of beaches and coastal sand dunes. For instance, the researchers noted that uplift west of the Northern San Andreas Fault has blocked the southward drift of sediment from the Russian River and Salmon Creek, leading to the swiftly growing South Salmon Creek Beach and its background of high coastal sand dunes.
-end-


Seismological Society of America

Related San Andreas Fault Articles:

Signs of 1906 earthquake revealed in mapping of offshore northern San Andreas Fault
A new high-resolution map of a poorly known section of the northern San Andreas Fault reveals signs of the 1906 San Francisco earthquake, and may hold some clues as to how the fault could rupture in the future, according to a new study published in the Bulletin of the Seismological Society of America.
Geoscientists find unexpected 'deep creep' near San Andreas, San Jacinto faults
A new analysis of thousands of very small earthquakes in the San Bernardino basin suggests that the unusual deformation of some may be due to 'deep creep' 10 km below the Earth's surface, say geoscientists at UMass Amherst.
USU geologists detail likely site of San Andreas Fault's next major quake
Utah State University geologist Susanne Jänecke and colleagues identify the San Andreas Fault's 'Durmid Ladder' structure, a a nearly 15.5-mile-long, sheared zone with two, nearly parallel master faults and hundreds of smaller, rung-like cross faults that could be the site of the region's next major earthquake.
Site of the next major earthquake on the San Andreas Fault?
Many researchers hypothesize that the southern tip of the 1300-km-long San Andreas fault zone (SAFZ) could be the nucleation site of the next major earthquake on the fault, yet geoscientists cannot evaluate this hazard until the location and geometry of the fault zone is documented.
'Slow earthquakes' on San Andreas Fault increase risk of large quakes, say ASU scientists
A detailed study of the California fault has discovered a new kind of movement that isn't accounted for in earthquake forecasting.
Parkfield segment of San Andreas fault may host occasional large earthquakes
Although magnitude 6 earthquakes occur about every 25 years along the Parkfield Segment of the San Andreas Fault, geophysical data suggest that the seismic slip induced by those magnitude 6 earthquakes alone does not match the long-term slip rates on this part of the San Andreas fault, researchers report November 28 in the Bulletin of the Seismological Society of America (BSSA).
Lessons from Parkfield help predict continued fault movements after earthquakes
A new study shows that the San Andreas Fault continued to slip gradually for six to 12 years after the 2004 magnitude 6.0 Parkfield, Calif., earthquake, raising the issue of continued damage to structures built across fault zones after damaging earthquakes.
Fault system off San Diego, Orange, Los Angeles counties could produce magnitude 7.3 quake
The Newport-Inglewood and Rose Canyon faults had been considered separate systems but a new study shows that they are actually one continuous fault system running from San Diego Bay to Seal Beach in Orange County, then on land through the Los Angeles basin.
Finding fault: USU geologist probes earthquake history of Utah's Wasatch Fault
Utah State University geologist Alexis Ault is exploring processes that cause earthquakes in Utah's Wasatch Fault down to the nano-scale.
Ventura fault could cause stronger shaking, new research finds
A new study by a team of researchers, including one from UC Riverside, found that the fault under Ventura, Calif., would likely cause stronger shaking during an earthquake and more damage than previously suspected.
More San Andreas Fault News and San Andreas Fault Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.