Nav: Home

The salt-craving neurons

March 27, 2019

Potato chips, French fries, popcorn--whichever your preference, we all know that salt is a key component of many tasty foods. But eating too much salt has potential health risks and can lead to cardiovascular and cognitive disorders. Now, Caltech researchers have identified neurons that drive and quench salt cravings in the mouse brain. The findings are an entry point into regulating sodium cravings in humans.

The work was done in the laboratory of Yuki Oka, assistant professor of biology and Chen Scholar. A paper describing the research appears online on March 27 ahead of publication in the journal Nature. Oka is an affiliated faculty member of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech.

Sodium--an ion found in table salt--plays a critical role in various body functions, such as cardiovascular activity, fluid balance, and nerve signaling. In every animal species, the body strictly regulates and maintains sodium levels. Because animals cannot metabolically create sodium themselves, the ions have to be ingested from external food sources. When the body is low on sodium, the brain triggers specific appetite signals that drive the consumption of sodium. Though the mechanisms of these appetite signals are not fully understood, a team of researchers has now discovered a small population of neurons in the mouse hindbrain that controls the drive to consume sodium.

Led by graduate student Sangjun Lee, the team used genetic tools to manipulate the activity of these neurons so that they could be stimulated with light. The researchers observed that artificially stimulating these neurons caused mice to lick a piece of rock salt repeatedly, even when their bodies were completely sated with sodium.

Next, the researchers measured the activity of these neurons while mice ate sodium. Within several seconds of sodium hitting the animal's tongue, the activity of the sodium-appetite neurons was inhibited. However, a direct infusion of sodium into the stomach of these mice did not suppress the neural activity. This neural suppression also did not occur when sodium receptors on the tongue were pharmacologically blocked. Taken together, the research shows that oral sodium signals, likely mediated by the taste system, are necessary to inhibit the sodium-appetite neurons.

"The desire to eat salt is the body's way of telling you that your body is low on sodium," says Oka. "Once sodium is consumed, it takes some time for the body to fully absorb it. So, it's interesting that just the taste of sodium is sufficient to quiet down the activity of the salt-appetite neurons, which means that sensory systems like taste are much more important in regulating the body's functions than simply conveying external information to the brain."

Interestingly, in many species, including humans, consuming sodium can drive the desire to eat even more. In future work, Oka and his collaborators would like to understand how sodium-appetite neurons are modulated over time. Answering this question may open up avenues to help people with health issues to eat less sodium in their diets.
-end-
The paper is titled "Chemosensory modulation of neural circuits for sodium appetite." In addition to Lee and Oka, other Caltech co-authors are graduate student Vineet Augustine, postdoctoral scholars Yuan Zhao and Haruka Ebisu, and research technician assistant Brittany Ho. Dong Kong of Tufts University is also a co-author. Funding was provided by Caltech, the Searle Foundation, the Edward Mallinckrodt, Jr. Foundation, the McKnight Foundation, the Klingenstein-Simons Foundation, the National Institutes of Health, and the Uehara Memorial Foundation.

California Institute of Technology

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.