Nav: Home

Self-sustaining, bioengineered blood vessels could replace damaged vessels in patients

March 27, 2019

A research team has bioengineered blood vessels that safely and effectively integrated into the native circulatory systems of 60 patients with end-stage kidney failure over a four-year phase 2 clinical trial. The new vessels (which are currently being tested in two ongoing phase 3 clinical trials) could help address a critical gap in medicine - the pressing need for safe and effective materials that can replace injured human blood vessels. Blood vessels can be damaged by a variety of disorders and procedures, such as chronic heart conditions, organ transplants and cancer surgery. The standard-of-care option for repairing damaged vessels involves replacing them with blood vessels taken from elsewhere in the body, but this option can add undue stress to patients who are already struggling with medical conditions. Other approaches such as taking blood vessels from human donors or from animals face pitfalls due to limited availability and preservation techniques that impair the integrity of the tissue. To overcome these obstacles, Robert Kirkton and colleagues performed the most extensive microscopic analysis of engineered human tissue to date and used tissue engineering techniques to design bioengineered human acellular vessels (HAVs). Specifically, they seeded human vascular cells onto a biodegradable scaffold and housed them in a bioreactor system to help grow the tissue. After eight weeks of incubation, the researchers removed cellular material from the HAVs, leaving behind acellular vessels with strong mechanical and structural integrity. The scientists implanted the HAVs as access points into 60 patients with end-stage kidney failure undergoing treatment with hemodialysis, an invasive procedure that requires access to healthy blood vessels. Analysis of 16 HAV tissue samples taken from 13 subjects from 16 to 200 weeks after implantation showed that the vessels became populated with the patients' own cells and microvasculature over time. These results demonstrate that the HAVs transitioned from structures that did not contain cells into functional, multilayered tissue capable of blood transport, effectively becoming the patients' own blood vessels.
-end-


American Association for the Advancement of Science

Related Blood Vessels Articles:

3D printing, bioinks create implantable blood vessels
A biomimetic blood vessel was fabricated using a modified 3D cell printing technique and bioinks.
When blood vessels are overly permeable
In Germany alone there are around 400,000 patients who suffer from chronic inflammatory bowel diseases.
Nicotine-free e-cigarettes can damage blood vessels
A Penn study reveals single instance of vaping immediately leads to reduced vascular function.
Creating blood vessels on demand
Researchers discover new cell population that can help in regenerative processes.
Self-sustaining, bioengineered blood vessels could replace damaged vessels in patients
A research team has bioengineered blood vessels that safely and effectively integrated into the native circulatory systems of 60 patients with end-stage kidney failure over a four-year phase 2 clinical trial.
Found: the missing ingredient to grow blood vessels
Researchers have discovered an ingredient vital for proper blood vessel formation that explains why numerous promising treatments have failed.
How sickled red blood cells stick to blood vessels
An MIT study describes how sickled red blood cells get stuck in tiny blood vessels of patients with sickle-cell disease.
Like a zipper -- how cells form new blood vessels
Blood vessel formation relies on the ability of vascular cells to move while remaining firmly connected to each other.
Blood vessels instruct brain development
The group of Amparo Acker-Palmer (Buchmann Institute of Molecular Life Sciences and the Institute of Cell Biology and Neuroscience, Goethe University) reported in a Research Article in the last issue of the journal Science a novel function of blood vessels in orchestrating the proper development of neuronal cellular networks in the brain.
Texas A&M team develops new way to grow blood vessels
Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants.
More Blood Vessels News and Blood Vessels Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab