Nav: Home

Self-sustaining, bioengineered blood vessels could replace damaged vessels in patients

March 27, 2019

A research team has bioengineered blood vessels that safely and effectively integrated into the native circulatory systems of 60 patients with end-stage kidney failure over a four-year phase 2 clinical trial. The new vessels (which are currently being tested in two ongoing phase 3 clinical trials) could help address a critical gap in medicine - the pressing need for safe and effective materials that can replace injured human blood vessels. Blood vessels can be damaged by a variety of disorders and procedures, such as chronic heart conditions, organ transplants and cancer surgery. The standard-of-care option for repairing damaged vessels involves replacing them with blood vessels taken from elsewhere in the body, but this option can add undue stress to patients who are already struggling with medical conditions. Other approaches such as taking blood vessels from human donors or from animals face pitfalls due to limited availability and preservation techniques that impair the integrity of the tissue. To overcome these obstacles, Robert Kirkton and colleagues performed the most extensive microscopic analysis of engineered human tissue to date and used tissue engineering techniques to design bioengineered human acellular vessels (HAVs). Specifically, they seeded human vascular cells onto a biodegradable scaffold and housed them in a bioreactor system to help grow the tissue. After eight weeks of incubation, the researchers removed cellular material from the HAVs, leaving behind acellular vessels with strong mechanical and structural integrity. The scientists implanted the HAVs as access points into 60 patients with end-stage kidney failure undergoing treatment with hemodialysis, an invasive procedure that requires access to healthy blood vessels. Analysis of 16 HAV tissue samples taken from 13 subjects from 16 to 200 weeks after implantation showed that the vessels became populated with the patients' own cells and microvasculature over time. These results demonstrate that the HAVs transitioned from structures that did not contain cells into functional, multilayered tissue capable of blood transport, effectively becoming the patients' own blood vessels.
-end-


American Association for the Advancement of Science

Related Blood Vessels Articles:

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.
How high levels of blood fat cause inflammation and damage kidneys and blood vessels
Viral and bacterial infections are not the only causes of inflammation of body tissue.
3D printing, bioinks create implantable blood vessels
A biomimetic blood vessel was fabricated using a modified 3D cell printing technique and bioinks.
When blood vessels are overly permeable
In Germany alone there are around 400,000 patients who suffer from chronic inflammatory bowel diseases.
Nicotine-free e-cigarettes can damage blood vessels
A Penn study reveals single instance of vaping immediately leads to reduced vascular function.
Creating blood vessels on demand
Researchers discover new cell population that can help in regenerative processes.
Self-sustaining, bioengineered blood vessels could replace damaged vessels in patients
A research team has bioengineered blood vessels that safely and effectively integrated into the native circulatory systems of 60 patients with end-stage kidney failure over a four-year phase 2 clinical trial.
Found: the missing ingredient to grow blood vessels
Researchers have discovered an ingredient vital for proper blood vessel formation that explains why numerous promising treatments have failed.
How sickled red blood cells stick to blood vessels
An MIT study describes how sickled red blood cells get stuck in tiny blood vessels of patients with sickle-cell disease.
Like a zipper -- how cells form new blood vessels
Blood vessel formation relies on the ability of vascular cells to move while remaining firmly connected to each other.
More Blood Vessels News and Blood Vessels Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.